Erythropoietin Facilitates Return of Spontaneous Circulation and Survival in Victims of Out-of-Hospital Cardiac Arrest

  • Š. Grmec
  • M. Strnad
  • R. J. Gazmuri
Conference paper


Erythropoietin (EPO) is a 30.4-kDa glycoprotein best known for its action on erythroid progenitor cells and regulation of circulating red cell mass. However, several studies have shown that EPO also activates potent cell-survival mechanisms during ischaemia and reperfusion through genomic and nongenomic signalling pathways in a broad array of organs and tissues, including the heart [1, 2, 3, 4, 5, 6] and brain [7, 8, 9].


Propensity Score Intensive Care Unit Admission KATP Channel Mitochondrial Permeability Transition Pore Chest Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cai Z, Manalo DJ, Wei G et al (2003) Hearts from rodents exposed to intermittent hypoxia or erythropoietin are protected against ischemia-reperfusion injury. Circulation 108: 79–85PubMedCrossRefGoogle Scholar
  2. 2.
    Parsa CJ, Matsumoto A, Kim J et al (2003) A novel protective effect of erythropoietin in the infarcted heart. J Clin Invest 112: 999–1007PubMedGoogle Scholar
  3. 3.
    Tramontano AF, Muniyappa R, Black AD et al (2003) Erythropoietin protects cardiac myocytes from hypoxia-induced apoptosis through an Akt-dependent pathway. Biochem Biophys Res Commun 308: 990–994PubMedCrossRefGoogle Scholar
  4. 4.
    Parsa CJ, Kim J, Riel RU et al (2004) Cardioprotective effects of erythropoietin in the reperfused ischemic heart: a potential role for cardiac fibroblasts. J Biol Chem 279: 20655–20662PubMedCrossRefGoogle Scholar
  5. 5.
    Wright GL, Hanlon P, Amin K et al (2004) Erythropoietin receptor expression in adult rat cardiomyocytes is associated with an acute cardioprotective effect for recombinant erythropoietin during ischemia-reperfusion injury. FASEB J 18: 1031–1033PubMedGoogle Scholar
  6. 6.
    Namiuchi S, Kagaya Y, Ohta J et al (2005) High serum erythropoietin level is associated with smaller infarct size in patients with acute myocardial infarction who undergo successful primary percutaneous coronary intervention. J Am Coll Cardiol 45: 1406–1412PubMedCrossRefGoogle Scholar
  7. 7.
    Brines ML, Ghezzi P, Keenan S et al (2000) Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci USA 97: 10526–10531PubMedCrossRefGoogle Scholar
  8. 8.
    Ghezzi P, Brines M (2004) Erythropoietin as an antiapoptotic, tissue-protective cytokine. Cell Death Differ 11: S37–S44PubMedCrossRefGoogle Scholar
  9. 9.
    Celik M, Gokmen N, Erbayraktar S et al (2002) Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury. Proc Natl Acad Sci USA 99: 2258–2263PubMedCrossRefGoogle Scholar
  10. 10.
    Rui T, Feng Q, Lei M et al (2005) Erythropoietin prevents the acute myocardial inflammatory response induced by ischemia/reperfusion via induction of AP-1. Cardiovasc Res 65: 719–727PubMedCrossRefGoogle Scholar
  11. 11.
    Li Y, Takemura G, Okada H et al (2006) Reduction of inflammatory cytokine expression and oxidative damage by erythropoietin in chronic heart failure. Cardiovasc Res 71: 684–694PubMedCrossRefGoogle Scholar
  12. 12.
    van der MP, Lipsic E, Henning RH et al (2005) Erythropoietin induces neovascularization and improves cardiac function in rats with heart failure after myocardial infarction. J Am Coll Cardiol 46: 125–133CrossRefGoogle Scholar
  13. 13.
    Hirata A, Minamino T, Asanuma H et al (2006) Erythropoietin enhances neovascularization of ischemic myocardium and improves left ventricular dysfunction after myocardial infarction in dogs. J Am Coll Cardiol 48: 176–184PubMedCrossRefGoogle Scholar
  14. 14.
    Singh D, Kolarova JD, Wang S et al (2007) Myocardial protection by erythropoietin during resuscitation from ventricular fibrillation. Am J Ther 14: 361–368PubMedCrossRefGoogle Scholar
  15. 15.
    Liu H, Zhang HY, Zhu X et al (2002) Preconditioning blocks cardiocyte apoptosis: role of K(ATP) channels and PKC-epsilon. Am J Physiol 282: H1380–H1386Google Scholar
  16. 16.
    Guo D, Nguyen T, Ogbi M et al (2007) Protein kinase C-epsilon coimmunoprecipitates with cytochrome oxidase subunit IV and is associated with improved cytochrome-c oxidase activity and cardioprotection. Am J Physiol Heart Circ Physiol 293: H2219–H2230PubMedCrossRefGoogle Scholar
  17. 17.
    Holmuhamedov EL, Jovanovic S, Dzeja PP et al (1998) Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Physiol 275 (5 Pt 2): H1567–H1576PubMedGoogle Scholar
  18. 18.
    Chen CH, Budas GR, Churchill EN et al (2008) Activation of aldehyde dehydrogenasereduces ischemic damage to the heart. Science 321 (5895): 1493–1495PubMedCrossRefGoogle Scholar
  19. 19.
    Baines CP, Song CX, Zheng YT et al (2003) Protein kinase C epsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res 92: 873–880PubMedCrossRefGoogle Scholar
  20. 20.
    Ishida H, Hirota Y, Genka C et al (2001) Opening of mitochondrial K(ATP) channels attenuates the ouabain-induced calcium overload in mitochondria. Circ Res 89: 856–858PubMedCrossRefGoogle Scholar
  21. 21.
    Light PE, Kanji HD, Fox JE et al (2001) Distinct myoprotective roles of cardiac sarcolemmal and mitochondrial KATP channels during metabolic inhibition and recovery. FASEB J 15: 2586–2594PubMedCrossRefGoogle Scholar
  22. 22.
    Wang L, Cherednichenko G, Hernandez L et al (2001) Preconditioning limits mitochondrial Ca(2+) during ischemia in rat hearts: role of K(ATP) channels. Am J Physiol Heart Circ Physiol 280: H2321–H2328PubMedGoogle Scholar
  23. 23.
    Ahmad N, Wang Y, Haider KH et al (2006) Cardiac protection by mitoKATP channels is dependent on Akt translocation from cytosol to mitochondria during late preconditioning. Am J Physiol Heart Circ Physiol 290: H2402–H2408PubMedCrossRefGoogle Scholar
  24. 24.
    Grmec S, Strnad M, Kupnik D et al (2009) Erythropoietin facilitates the return of spontaneous circulation and survival in victims of out-of-hospital cardiac arrest. Resuscitation 80: 631–642PubMedCrossRefGoogle Scholar
  25. 25.
    Sanders AB, Atlas M, Ewy GA et al (1985) Expired PCO2 as an index of coronary perfusion pressure. Am J Emerg Med 3: 147–149PubMedCrossRefGoogle Scholar
  26. 26.
    Gudipati CV, Weil MH, Bisera J et al (1988) Expired carbon dioxide: A noninvasive monitor of cardiopulmonary resuscitation. Circulation 77: 234–239PubMedCrossRefGoogle Scholar
  27. 27.
    Kolar M, Križmarić M, Klemen P et al (2008) Partial pressure of end-tidal carbon dioxide successful predicts cardiopulmonary resuscitation in the field: a prospective observational study. Crit Care 12: R115PubMedCrossRefGoogle Scholar
  28. 28.
    Siren AL, Ehrenreich H (2001) Erythropoietin-a novel concept for neuroprotection. Eur Arch Psychiatry Clin Neurosci 251: 179–184PubMedCrossRefGoogle Scholar
  29. 29.
    Chavez JC, LaManna JC (2002) Activation of hypoxia-inducible factor-1 in the rat cerebral cortex after transient global ischemia: potential role of insulin-like growth factor-1. J Neurosci 22: 8922–8931PubMedGoogle Scholar
  30. 30.
    Chavez JC, Baranova O, Lin J, Pichiule P (2006) The transcriptional activator hypoxia inducible factor 2 (HIF-2/EPAS-1) regulates the oxygen-dependent expression of erythropoietin in cortical astrocytes. J Neurosci 26: 9471–9481PubMedCrossRefGoogle Scholar
  31. 31.
    Liu R, Suzuki A, Guo Z et al (2006) Intrinsic and extrinsic erythropoietin enhances neuroprotection against ischemia and reperfusion injury in vitro. J Neurochem 96: 1101–1110PubMedCrossRefGoogle Scholar
  32. 32.
    Hasselblatt M, Ehrenreich H, Siren AL (2006) The brain erythropoietin system and its potential for therapeutic exploitation in brain disease. J Neurosurg Anesthesiol 18: 132–138PubMedCrossRefGoogle Scholar
  33. 33.
    Ruscher K, Freyer D, Karsch M et al (2002) Erythropoietin is a paracrine mediator of ischemic tolerance in the brain: evidence from an in vitro model. J Neurosci 22: 10291–10301PubMedGoogle Scholar
  34. 34.
    Jelkmann W, Wagner K (2004) Beneficial and ominous aspects of the pleiotropic action of erythropoietin. Ann Hematol 83: 673–686PubMedCrossRefGoogle Scholar
  35. 35.
    Marti HH (2004) Erythropoietin and the hypoxic brain. J Exp Biol 207: 3233–3242PubMedCrossRefGoogle Scholar
  36. 36.
    Sola A, Rogido M, Lee BH (2005) Erythropoietin after focal cerebral ischemia activates the Janus kinase-signal transducer and activator of transcription signaling pathway and improves brain injury in postnatal day 7 rats. Pediatr Res 57: 481–487PubMedCrossRefGoogle Scholar
  37. 37.
    Kumral A, Uysal N, Tugyan K et al (2004) Erythropoietin improves long-term spatial memory deficits and brain injury following neonatal hypoxia-ischemia in rats. Behav Brain Res 153: 77–86PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2011

Authors and Affiliations

  • Š. Grmec
  • M. Strnad
  • R. J. Gazmuri

There are no affiliations available

Personalised recommendations