Skip to main content

Experimental Treatment for Preservation of Mechanically Competent Cardiac Activity Following Cardiac Arrest

  • Conference paper
Anaesthesia, Pharmacology, Intensive Care and Emergency Medicine A.P.I.C.E.

Abstract

It has been suggested that sudden cardiac arrest may affect as many as 6.8 million individuals annually (~1:1,000 people) [1, 2]. In the United States, every year approximately 300,000 individuals suffer an episode of out-of-hospital sudden cardiac arrest [3]. Efforts to reestablish life are formidably challenging, requiring not only that cardiac activity be reestablished but that injury to vital organs be prevented, minimised, or reversed. Resuscitation methods yield an average survival and hospital discharge rate with intact neurological function that approaches 7.9% in the United States [4], 10.7% in Europe [5], and only 1.0% in the rest of the world [6]. In the United States, efficient emergency medical service systems can initially reestablish cardiac activity in approximately 30% of individuals [7–9] with >40% dying before hospital admission [10]. Of those admitted to hospital, nearly 75% die before hospital discharge due to variable degrees of myocardial or neurological dysfunction, systemic inflammation, intercurrent illnesses, or a combination thereof [10–12]. Thus, initial reestablishment of cardiac activity using available resuscitation treatments does not ensure ultimate survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith TW, Cain ME (2006) Sudden cardiac death: epidemiologic and financial worldwide perspective. J Interv Card Electrophysiol 17 (3): 199–203

    Article  PubMed  Google Scholar 

  2. U.S. Census Bureau (2010) U.S. and World Population Clocks Available at http://www.census.gov/main/www/popclock. Accessed 9 Dec 2010

    Google Scholar 

  3. Lloyd-Jones D, Adams R, Carnethon M et al (2009) Heart disease and stroke statistics — 2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119: e21–e181

    Article  PubMed  Google Scholar 

  4. Nichol G, Thomas E, Callaway CW et al (2008) Regional variation in out-of- hospital cardiac arrest incidence and outcome. JAMA 300 (12): 1423–1431

    Article  PubMed  CAS  Google Scholar 

  5. Atwood C, Eisenberg MS, Herlitz J, Rea TD (2005) Incidence of EMS-treated out-of-hospital cardiac arrest in Europe. Resuscitation 6–7 (1): 75–80

    Article  PubMed  Google Scholar 

  6. Seidl K, Senges J (2003) Worldwide utilization of implantable cardioverter/defibrillators now and in the future. Card Electrophysiol Rev 7 (1): 5–13

    Article  PubMed  CAS  Google Scholar 

  7. Brown CG, Martin DR, Pepe PE et al (1992) A comparison of standard-dose and high-dose epinephrine in cardiac arrest outside the hospital. N Engl J Med 327: 1051–1055

    Article  PubMed  CAS  Google Scholar 

  8. Kellermann AL, Hackman BB, Somes G (1993) Predicting the outcome of unsuccessful prehospital advanced cardiac life support. JAMA 270: 1433–1436

    Article  PubMed  CAS  Google Scholar 

  9. Lombardi G, Gallagher J, Gennis P (1994) Outcome of out-of-hospital cardiac arrest in New York City. The pre-hospital arrest survival evaluation ( PHASE) study. JAMA 271: 678–683

    Article  PubMed  CAS  Google Scholar 

  10. Laurent I, Monchi M, Chiche JD et al (2002) Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol 40 (12): 2110–2116

    Article  PubMed  Google Scholar 

  11. Checchia PA, Sehra R, Moynihan J et al (2003) Myocardial injury in children following resuscitation after cardiac arrest. Resuscitation 57 (2): 131–137

    Article  PubMed  Google Scholar 

  12. Laver S, Farrow C, Turner D, Nolan J (2004) Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med 30 (11): 2126–2128

    Article  PubMed  Google Scholar 

  13. van Alem AP, Post J, Koster RW (2003) VF recurrence: characteristics and patient outcome in out-of-hospital cardiac arrest. Resuscitation 59 (2): 181–188

    Article  PubMed  Google Scholar 

  14. Kuo CS, Munakata K, Reddy CP, Surawicz B (1983) Characteristics and possible mechanism of ventricular arrhythmia dependent on the dispersion of action potential durations. Circulation 67 (6): 1356–1367

    Article  PubMed  CAS  Google Scholar 

  15. Mandapati R, Asano Y, Baxter WT et al (1998) Quantification of effects of global ischemia on dynamics of ventricular fibrillation in isolated rabbit heart. Circulation 98 (16): 1688–1696

    PubMed  CAS  Google Scholar 

  16. Jardetzky O, Greene EA, Lorber V (1956) Oxygen consumption of the completely isolated dog heart in fibrillation. Circ Res 4 (2): 144–147

    PubMed  CAS  Google Scholar 

  17. Hashimoto K, Shigei T, Imai S et al (1960) Oxygen consumption and coronary vascular tone in the isolated fibrillating dog heart. Am J Physiol 198: 965–970

    PubMed  CAS  Google Scholar 

  18. Kusuoka H, Chacko VP, Marban E (1992) Myocardial energetics during ventricular fibrillation investigated by magnetization transfer nuclear magnetic resonance spectroscopy. Circ Res 71 (5): 1111–1122

    PubMed  CAS  Google Scholar 

  19. Luqman N, Sung RJ, Wang CL, Kuo CT (2007) Myocardial ischemia and ventricular fibrillation: pathophysiology and clinical implications. Int J Cardiol 119 (3): 283–290

    Article  PubMed  Google Scholar 

  20. Trenor B, Romero L, Ferrero JM Jr et al (2007) Vulnerability to reentry in a regionally ischemic tissue: a simulation study. Ann Biomed Eng 35 (10): 1756–1770

    Article  PubMed  Google Scholar 

  21. Karmazyn M, Sawyer M, Fliegel L (2005) The na(+)/h(+) exchanger: a target for cardiac therapeutic intervention. Curr Drug Targets Cardiovasc Haematol Disord 5 (4): 323–335

    Article  PubMed  CAS  Google Scholar 

  22. Imahashi K, Kusuoka H, Hashimoto K et al (1999) Intracellular sodium accumulation during ischemia as the substrate for reperfusion injury. Circ Res 84 (12): 1401–1406

    PubMed  CAS  Google Scholar 

  23. Gazmuri RJ, Hoffner E, Kalcheim J et al (2001) Myocardial protection during ventricular fibrillation by reduction of proton-driven sarcolemmal sodium influx. J Lab Clin Med 137 (1): 43–55

    Article  PubMed  CAS  Google Scholar 

  24. Avkiran M, Ibuki C, Shimada Y, Haddock PS (1996) Effects of acidic reperfusion on arrhythmias and Na(+)-K(+)-ATPase activity in regionally ischemic rat hearts. Am J Physiol 270 (3 Pt 2): H957–H964

    PubMed  CAS  Google Scholar 

  25. An J, Varadarajan SG, Camara A et al (2001) Blocking Na(+)/H(+) exchange reduces [Na(+)](i) and [Ca(2+)](i) load after ischemia and improves function in intact hearts. Am J Physiol 281 (6): H2398–H2409

    CAS  Google Scholar 

  26. Gunter TE, Buntinas L, Sparagna G et al (2000) Mitochondrial calcium transport: mechanisms and functions. Cell Calcium 28 (5–6): 285–296

    Article  PubMed  CAS  Google Scholar 

  27. Yamamoto S, Matsui K, Ohashi N (2002) Protective effect of Na+ /H+ exchange inhibitor, SM-20550, on impaired mitochondrial respiratory function and mitochondrial Ca2+ overload in ischemic/reperfused rat hearts. J Cardiovasc Pharmacol 39 (4): 569–575

    Article  PubMed  CAS  Google Scholar 

  28. Borutaite V, Brown GC (2003) Mitochondria in apoptosis of ischemic heart. FEBS Lett 541 (1–3): 1–5

    Article  PubMed  CAS  Google Scholar 

  29. Karmazyn M (1998) The myocardial sodium-hydrogen exchanger (NHE) and its role in mediating ischemic and reperfusion injury. Keio J Med 47 (2): 65–72

    Article  PubMed  CAS  Google Scholar 

  30. Kusumoto K, Haist JV, Karmazyn M (2001) Na(+)/H(+) exchange inhibition reduces hypertrophy and heart failure after myocardial infarction in rats. Am J Physiol 280 (2): H738–H745

    CAS  Google Scholar 

  31. Teshima Y, Akao M, Jones SP, Marban E (2003) Cariporide (HOE642), a selective Na+-H+ exchange inhibitor, inhibits the mitochondrial death pathway. Circulation 108 (18): 2275–2281

    Article  PubMed  CAS  Google Scholar 

  32. Wang S, Radhakrishnan J, Ayoub IM et al (2007) Limiting sarcolemmal Na+ entry during resuscitation from VF prevents excess mitochondrial Ca2+ accumulation and attenuates myocardial injury. J Appl Physiol 103: 55–65

    Article  PubMed  CAS  Google Scholar 

  33. Kolarova JD, Ayoub IM, Gazmuri RJ (2005) Cariporide enables hemodynamically more effective chest compression by leftward shift of its flow-depth relationship. Am J Physiol Heart Circ Physiol 288: H2904–H2911

    Article  PubMed  CAS  Google Scholar 

  34. Ayoub IM, Kolarova J, Kantola R et al (2007) Zoniporide preserves left ventricular compliance during ventricular fibrillation and minimizes post-resuscitation myocardial dysfunction through benefits on energy metabolism. Crit Care Med 35: 2329–2336

    Article  PubMed  CAS  Google Scholar 

  35. Ayoub IM, Kolarova J, Gazmuri RJ (2010) Cariporide given during resuscitation promotes return of electrically stable and mechanically competent cardiac activity. Resuscitation 81 (1): 106–110

    Article  PubMed  CAS  Google Scholar 

  36. Klouche K, Weil MH, Sun S et al (2002) Evolution of the stone heart after prolonged cardiac arrest. Chest 122 (3): 1006–1011

    Article  PubMed  Google Scholar 

  37. Ayoub IM, Kolarova JD, Yi Z et al (2003) Sodium-hydrogen exchange inhibition during ventricular fibrillation: Beneficial effects on ischemic contracture, action potential duration, reperfusion arrhythmias, myocardial function, and resuscitability. Circulation 107: 1804–1809

    Article  PubMed  Google Scholar 

  38. White RD, Russell JK (2002) Refibrillation, resuscitation and survival in out-of-hospital sudden cardiac arrest victims treated with biphasic automated external defibrillators. Resuscitation 55 (1): 17–23

    Article  PubMed  Google Scholar 

  39. Hess EP, White RD (2004) Recurrent ventricular fibrillation in out-of-hospital cardiac arrest after defibrillation by police and firefighters: implications for automated external defibrillator users. Crit Care Med 32 (9 Suppl): S436–S439

    Article  PubMed  Google Scholar 

  40. Gazmuri RJ, Weil MH, Bisera J et al (1996) Myocardial dysfunction after successful resuscitation from cardiac arrest. Crit Care Med 24 (6): 992–1000

    Article  PubMed  CAS  Google Scholar 

  41. Kern KB, Hilwig RW, Rhee KH, Berg RA (1996) Myocardial dysfunction after resuscitation from cardiac arrest: An example of global myocardial stunning. J Am Coll Cardiol 28: 232–240

    Article  PubMed  CAS  Google Scholar 

  42. Ruiz-Bailen M, Aguayo dH, Ruiz-Navarro S et al (2005) Reversible myocardial dysfunction after cardiopulmonary resuscitation. Resuscitation 66 (2): 175–181

    Article  PubMed  Google Scholar 

  43. Schlesinger PH, Gross A, Yin XM et al (1997) Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2. Proc Natl Acad Sci USA 94 (21): 11357–11362

    Article  PubMed  CAS  Google Scholar 

  44. Korsmeyer SJ, Wei MC, Saito M et al (2000) Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7 (12): 1166–1173

    Article  PubMed  CAS  Google Scholar 

  45. Opie LH, Clusin WT (1990) Cellular mechanism for ischemic ventricular arrhythmias. Annu Rev Med 41: 231–238

    Article  PubMed  CAS  Google Scholar 

  46. Shivkumar K, Deutsch NA, Lamp ST et al (1997) Mechanism of hypoxic K loss in rabbit ventricle. J Clin Invest 100 (7): 1782–1788

    Article  PubMed  CAS  Google Scholar 

  47. Franz MR (1999) Current status of monophasic action potential recording: theories, measurements and interpretations. Cardiovasc Res 41 (1): 25–40

    Article  PubMed  CAS  Google Scholar 

  48. Ayoub IM, Kolarova JD, Sehgal MA et al (2003) Sodium-hydrogen exchange inhibition minimizes adverse effects of epinephrine during cardiac resuscitation. Circulation 108: IV–420

    Google Scholar 

  49. Wirth KJ, Maier T, Busch AE (2001) NHE1-inhibitor cariporide prevents the transient reperfusion-induced shortening of the monophasic action potential after coronary ischemia in pigs. Basic Res Cardiol 96 (2): 192–197

    Article  PubMed  CAS  Google Scholar 

  50. Gazmuri RJ, Ayoub IM, Hoffner E, Kolarova JD (2001) Successful ventricular defibrillation by the selective sodium-hydrogen exchanger isoform-1 inhibitor cariporide. Circulation 104: 234–239

    PubMed  CAS  Google Scholar 

  51. Ayoub IM, Kolarova J, Kantola RL et al (2005) Cariporide minimizes adverse myocardial effects of epinephrine during resuscitation from ventricular fibrillation. Crit Care Med 33 (11): 2599–2605

    Article  PubMed  CAS  Google Scholar 

  52. Xu T, Tang W, Ristagno G et al (2008) Postresuscitation myocardial diastolic dysfunction following prolonged ventricular fibrillation and cardiopulmonary resuscitation. Crit Care Med 36 (1): 188–192

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Italia

About this paper

Cite this paper

Ayoub, I.M., Radhakrishnan, J., Gazmuri, R.J. (2011). Experimental Treatment for Preservation of Mechanically Competent Cardiac Activity Following Cardiac Arrest. In: Gullo, A. (eds) Anaesthesia, Pharmacology, Intensive Care and Emergency Medicine A.P.I.C.E.. Springer, Milano. https://doi.org/10.1007/978-88-470-2014-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2014-6_15

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2013-9

  • Online ISBN: 978-88-470-2014-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics