Nasopharyngeal Cooling During Cardiopulmonary Resuscitation

  • F. Fumagalli
  • G. Ristagno
Conference paper


Cardiovascular disease remains the leading cause of death in the Western world, with as many as 400,000 Americans and 700,000 Europeans sustaining cardiac arrest each year [1]. Though the initial success of cardiopulmonary resuscitation (CPR) is approximately 39%, the majority of victims die within 72 h of hospital admission [2, 3, 4]. Patients successfully resuscitated following cardiac arrest in fact often present with what is now termed “postresuscitation disease” [5]. Most prominent among these diseases are postresuscitation myocardial failure and ischaemic brain damage. Severe postresuscitation heart contractile failure has been implicated as one of the most important mechanism causing these fatal outcomes [6, 7, 8, 9]. However, morbidity and mortality after successful CPR also largely depends on recovery of neurologic function. Up to 30% of survivors of cardiac arrest manifest permanent brain damage [10, 11, 12], and in some instances, only 2–12% of resuscitated patients are discharged from hospital without neurological dysfunction [13].


Cardiac Arrest Therapeutic Hypothermia Chest Compression Coronary Perfusion Pressure Brain Cool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    International Liaison Committee on Resuscitation (2005) Part 2: Adult basic life support. Resuscitation 67:187–201CrossRefGoogle Scholar
  2. 2.
    Schenenberger RA, von Planta M, von Planta I (1994) Survival after failed out of hospital resuscitation. Are further therapeutic efforts in the emergency department futile? Arch Intern Med 154:2433–2437Google Scholar
  3. 3.
    Brown CG, Martin DR, Pepe PE et al (1992) Comparison of standard-dose and high-dose epinephrine in cardiac arrest outside the hospital. The Multicenter High-Dose Epinephrine Study Group. N Engl J Med 327:1051–1055PubMedCrossRefGoogle Scholar
  4. 4.
    Brain Resuscitation Clinical Trial I Study Group (1986) Randomized clinical study of thiopental loading in comatose survivors of cardiac arrest. N Engl J Med 314:397–403CrossRefGoogle Scholar
  5. 5.
    Adrie C, Laurent I, Monchi M et al (2004) Postresuscitation disease after cardiac arrest: a sepsis-like syndrome? Curr Opin Crit Care 10:208–212PubMedCrossRefGoogle Scholar
  6. 6.
    Stiell IG, Hebert PC, Weitzman BN et al (1992) High-dose epinephrine in adult cardiac arrest. N Engl J Med 327:1045–1050PubMedCrossRefGoogle Scholar
  7. 7.
    DeBard ML (1981) Cardiopulmonary resuscitation: analysis of six years’ experience and review of the literature. Ann Emerg Med 10:408–416PubMedCrossRefGoogle Scholar
  8. 8.
    Peatfield RC, Sillett RW, Taylor D et al (1977) Survival after cardiac arrest in the hospital. Lancet 1:1223–1225PubMedCrossRefGoogle Scholar
  9. 9.
    Tang W, Weil MH, Sun SJ et al (1993) Progressive myocardial dysfunction after cardiac resuscitation. Crit Care Med 21:1046–1050PubMedCrossRefGoogle Scholar
  10. 10.
    Safar P (1993) Cerebral resuscitation after cardiac arrest: research initiatives and future directions. Ann Emerg Med 22:324–349PubMedCrossRefGoogle Scholar
  11. 11.
    Brain Resuscitation Clinical Trial II Study Group (1991) A randomized clinical study of a calcium-entry blocker (lidoflazine) in the treatment of comatose survivors of cardiac arrest. N Engl J Med 324:1225–1231CrossRefGoogle Scholar
  12. 12.
    Eisenberg MS, Horwood BT, Cummins RO et al (1990) Cardiac arrest and resuscitation:a tale of 29 cities. Ann Emerg Med 19:179–186PubMedCrossRefGoogle Scholar
  13. 13.
    Böttiger BW, Grabner C, Bauer H et al (1999) Long term outcome after out-of-hospital cardiac arrest with physician staffed emergency medical services: the Utstein style applied to a midsized urban/suburban area. Heart 82:674–679PubMedGoogle Scholar
  14. 14.
    2005 American Heart Association Guideline for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care (2005) Part 7.5: Postresuscitation support. Circulation 112:IV–84–IV–88Google Scholar
  15. 15.
    Safar P (1988) Resuscitation from clinical death: pathophysiologic limits and therapeutic potentials. Crit Care Med 16:923–941PubMedCrossRefGoogle Scholar
  16. 16.
    Sunde K, Pytte M, Jacobsen D et al (2007) Implementation of a standardized treatment protocol for post resuscitation care after out-of-hospital cardiac arrest. Resuscitation 73:29–39PubMedCrossRefGoogle Scholar
  17. 17.
    Knafelj R, Radsel P, Ploj T et al (2007) Primary percutaneous coronary intervention and mild induced hypothermia in comatose survivors of ventricular fibrillation with ST-elevation acute myocardial infarction. Resuscitation 74:227–234PubMedCrossRefGoogle Scholar
  18. 18.
    Kim F, Olsufka M, Carlbom D et al (2005) Pilot study of rapid infusion of 2 L of 4 degrees C normal saline for induction of mild hypothermia in hospitalized, comatose survivors of out-of-hospital cardiac arrest. Circulation 112:715–719PubMedCrossRefGoogle Scholar
  19. 19.
    Polderman KH (2004) Application of Therapeutic Hypothermia in the ICU: Opportunities and pitfalls of a promising treatment modality. Part 1: indications and evidence. Intensive Care Med 30:556–575PubMedCrossRefGoogle Scholar
  20. 20.
    Nolan JP, Morley PT, Vanden Hoek TL et al (2003) Therapeutic hypothermia after cardiac arrest: an advisory statement by the advanced life support task force of the International Liaison Committee on Resuscitation. Circulation 108:118–121PubMedCrossRefGoogle Scholar
  21. 21.
    Soar J, Nolan JP (2007) Mild hypothermia for post cardiac arrest syndrome. BMJ 335:459–460PubMedCrossRefGoogle Scholar
  22. 22.
    Kelly FE, Nolan JP (2010) The effects of mild induced hypothermia on the myocardium: a systematic review. Anaesthesia 65:505–515PubMedCrossRefGoogle Scholar
  23. 23.
    Safar P, Xiao F, Radovsky A et al (1996) Improved cerebral resuscitation from cardiac arrest in dogs with mild hypothermia plus blood flow promotion. Stroke 27:105–113PubMedCrossRefGoogle Scholar
  24. 24.
    Sanders AB (2006) Therapeutic hypothermia after cardiac arrest. Curr Opin Crit Care 12: 213–217PubMedCrossRefGoogle Scholar
  25. 25.
    Futterman LG, Lemberg L (2004) The significance of hypothermia in preserving ischemic myocardium. Am J Crit Care 13:79–84PubMedGoogle Scholar
  26. 26.
    The Hypothermia After Cardiac Arrest Study Group (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346:549–556CrossRefGoogle Scholar
  27. 27.
    Fritz HG, Bauer R (2004) Secondary injuries in brain trauma: effects of hypothermia. J Neurosurg Anesthesiol 16:43–52PubMedCrossRefGoogle Scholar
  28. 28.
    Bernard SA, Gray TW, Buist MD et al (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346:557–563PubMedCrossRefGoogle Scholar
  29. 29.
    Schwab S, Schwarz S, Spranger M et al (1998) Moderate hypothermia in the treat ment of patients with severe middle cerebral artery infarction. Stroke 29:2461–2466PubMedCrossRefGoogle Scholar
  30. 30.
    Shao ZH, Chang WT, Chan KC et al (2007) Hypothermia-induced cardioprotection using extended ischemia and early reperfusion cooling. Am J Physiol Heart Circ Physiol 292:H1995–H2003PubMedCrossRefGoogle Scholar
  31. 31.
    Zhao D, Abella BS, Beiser DG et al (2008) Intra-arrest cooling with delayed reperfusion yields higher survival than earlier normothermic resuscitation in a mouse model of cardiac arrest. Resuscitation 77:242–249PubMedCrossRefGoogle Scholar
  32. 32.
    Ning XH, Chi EY, Buroker NE et al (2007) Moderate hypothermia (30 degrees C) maintains myocardial integrity and modifies response of cell survival proteins after reperfusion. Am J Physiol Heart Circ Physiol 293:H2119–H2128PubMedCrossRefGoogle Scholar
  33. 33.
    D’Cruz BJ, Fertig KC, Filiano AJ et al (2002) Hypothermic reperfusion after cardiac arrest augments brain-derived neurotrophic factor activation. J Cereb Blood Flow Metab 22:843–851PubMedCrossRefGoogle Scholar
  34. 34.
    Dietrich WD, Busto R, Alonso O et al (1993) Intraischemic but not postischemic brain hypothermia protects chronically following global forebrain ischemia in rats. J Cereb Blood Flow Metab 14:541–549CrossRefGoogle Scholar
  35. 35.
    Ooboshi H, Ibayashi S, Takano K et al (2000) Hypothermia inhibits ischemia-induced efflux of amino acids and neuronal damage in the hippocampus of aged rats. Brain Res 884:23–30PubMedCrossRefGoogle Scholar
  36. 36.
    Shao ZH, Sharp WW, Wojcik KR et al (2007) Therapeutic hypothermia cardioprotection via Akt-and nitric oxide-mediated attenuation of mitochondrial oxidants. Am J Physiol Heart Circ Physiol 298:H2164–H2173CrossRefGoogle Scholar
  37. 37.
    Ristagno G, Tantillo S, Sun S et al (2010) Hypothermia improves ventricular myocyte contractility under conditions of normal perfusion and after an interval of ischemia. Resuscitation 81:898–903PubMedCrossRefGoogle Scholar
  38. 38.
    Holzer M (2008) Devices for rapid induction of hypothermia. Eur J Anaesthesiol Suppl 42:31–38PubMedCrossRefGoogle Scholar
  39. 39.
    Leonov Y, Sterz F, Safar P et al (1990) Mild cerebral hypothermia during and after cardiac arrest improves neurologic outcome in dogs. J Cereb Blood Flow Metab 10:57–70PubMedCrossRefGoogle Scholar
  40. 40.
    Abella BS, Zhao D, Alvarado J et al (2004) Intra-arrest cooling improves outcomes in a murine cardiac arrest model. Circulation 109:2786–2791PubMedCrossRefGoogle Scholar
  41. 41.
    Tsai MS, Barbut D, Tang W et al (2008) Rapid head cooling initiated coincident with cardiopulmonary resuscitation improves success of defibrillation and postresuscitation myocardial function in a porcine model of prolonged cardiac arrest. J Am Coll Cardiol 5241:1988–1990CrossRefGoogle Scholar
  42. 42.
    Tsai MS, Barbut D, Wang H et al (2008) Intra-arrest rapid head cooling improves postresuscitation myocardial function in comparison with delayed postresuscitation surface cooling. Crit Care Med 36:S434–S439PubMedCrossRefGoogle Scholar
  43. 43.
    Kuboyama K, Safar P, Radovsky A et al (1993) Delay in cooling negates the beneficial effect of mild resuscitative cerebral hypothermia after cardiac arrest in dogs: a prospective, randomized study. Crit Care Med 21:1348–1358PubMedCrossRefGoogle Scholar
  44. 44.
    Guan J, Barbut D, Wang H et al (2008) A comparison between head cooling begun during cardiopulmonary resuscitation and surface cooling after resuscitation in a pig model of cardiac arrest. Crit Care Med 36:S428–S433PubMedCrossRefGoogle Scholar
  45. 45.
    Yu T, Barbut D, Ristagno G et al (2010) Survival and neurological outcomes after nasopharyngeal cooling or peripheral vein cold saline infusion initiated during cardiopulmonary resuscitation in a porcine model of prolonged cardiac arrest. Crit Care Med 38:916–921PubMedCrossRefGoogle Scholar
  46. 46.
    Sterz F, Zeiner A et al (1996) Mild resuscitative hypothermia and outcome after cardiopulmonary resuscitation. J Neurosurg Anesthesiol 8:88–96PubMedCrossRefGoogle Scholar
  47. 47.
    Kuluz JW, Prado R, Chang J et al (1993) Selective brain cooling increases cortical cerebral blood flow in rats. Am J Physiol 265:H824-H82Google Scholar
  48. 48.
    Allers M, Boris-Moller F, Lunderquist A et al (2006) A new method of selective, rapid cooling of the brain: an experiemtnal study. Cardiovasc Intervent Radiol 29:260–263PubMedCrossRefGoogle Scholar
  49. 49.
    Wang H, Olivero W, Lanzino G et al (2004) Rapid and selective cerebral hypothermia achieved using a cooling helmet. J Neurosurg 100:272–277PubMedCrossRefGoogle Scholar
  50. 50.
    Callaway CW, Tadler SC, Katz LM et al (2002) Feasibility of external cranial cooling during out-of-hospital cardiac arrest. Resuscitation 52:159–165PubMedCrossRefGoogle Scholar
  51. 51.
    Wang Y, Zhu L (2007) Targeted brain hypothermia induced by an interstitial cooling device in human neck: theoretical analyses. Eur J Appl Physiol 101:31–40PubMedCrossRefGoogle Scholar
  52. 52.
    Storm C, Schefold JC, Kerner T et al (2008) Prehospital cooling with hypothermia caps (PreCoCa): a feasibility study. Clin Res Cardiol. Clin Res Cardiol 97:768–772PubMedCrossRefGoogle Scholar
  53. 53.
    Wang H, Tsai MS, Guan J et al (2007) Intra-arrest rapid head cooling improves success of resuscitation in a porcine model of prolonged cardiac arrest. Crit Care Med 35:A94 [abstract]Google Scholar
  54. 54.
    Frank SM, Cattaneo CG, Wieneke-Brady MB et al (2002) Threshold for adrenomedullary activation and increased cardiac work during mild core hypothermia. Clin Sci (Lond) 102:119–125CrossRefGoogle Scholar
  55. 55.
    Mourot L, Bouhaddi M, Gandelin E et al (2008) Cardiovascular autonomic control during short-term thermoneutral and cool head-out immersion. Aviat Space Environ Med 79:14–20PubMedCrossRefGoogle Scholar
  56. 56.
    Kawada T, Kitagawa H, Yamazaki T et al (2007) Hypothermia reduces ischemiaand stimulation-induced myocardial interstitial norepinephrine and acetylcholine releases. J Appl Physiol 102:622–627PubMedCrossRefGoogle Scholar
  57. 57.
    Pacak K (2000) Stressor-specific activation of the hypothalamic-pituitary-adrenocortical axis. Physiol Res 49:S11–S17PubMedGoogle Scholar
  58. 58.
    Sakr Y, Dubois MJ, De Backer D et al (2004) Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831PubMedCrossRefGoogle Scholar
  59. 59.
    De Backer D, Creteur J, Preiser JC et al (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104PubMedCrossRefGoogle Scholar
  60. 60.
    Fries M, Weil MH, Chang YT et al (2006) Microcirculation during cardiac arrest and resuscitation. Crit Care Med 34:S454–S457PubMedCrossRefGoogle Scholar
  61. 61.
    Fries M, Weil MH, Sun S et al (2006) Increases in tissue Pco2 during circulatory shock reflect selective decreases in capillary blood flow. Crit Care Med 34:446–452PubMedCrossRefGoogle Scholar
  62. 62.
    Ristagno G, Cho JH, Yu T et al (2008) Selective head cooling initiated during CPR induces post-resuscitation carotid artery dilation and increases in carotid artery flow and cerebral cortical microcirculation. Circulation 118:S661–S662Google Scholar
  63. 63.
    Castrén M, Nordberg P, Desruelles D et al (2009) Intra-arrest transnasal cooling: a randomized prehospital study: PRINCE (Pre-ROSC IntraNasal Cooling Effectiveness). Circulation 122(7):729–736Google Scholar

Copyright information

© Springer-Verlag Italia 2011

Authors and Affiliations

  • F. Fumagalli
  • G. Ristagno

There are no affiliations available

Personalised recommendations