Skip to main content

Study and Simulation of Solar Hydrogen Energy Systems

  • Chapter
  • 2348 Accesses

Abstract

Solar hydrogen energy systems integrate technologies of solar and wind energies to deliver a reliable energy supply. To achieve this, the volatile energy input from the sun and the windmust be smoothed out by the use of energy storage devices. The conversion of renewable energy to electric energy is performed by photovoltaic installations or aerogenerators, while the change of electricity to hydrogen and the reverse procedure are carried out by electrolysers, storage apparatus, fuel cells along with other satellite devices that ensure the efficient functioning of the systems. Mathematical modelling and the related simulations are hereby detailed to better understand and design the complete energy system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A boost-converter is a DC-DC power supply device that provides an output voltage higher than its input voltage.

  2. 2.

    A buck-converter is a DC-DC power supply device that provides an output voltage lower than its input voltage.

    Zini G., Tartarini P.: Solar Hydrogen Energy Systems. Science and Technology for the Hydrogen Economy. DOI 10.1007/978-88-470-1998-0.9,© Springer-Verlag Italia 2012

References

  1. Ahmad G E, El Shenawy E T (2006) Optimized photovoltaic system for hydrogen production. Renewable Energy 31:1043–1054

    Article  Google Scholar 

  2. Aiche-Hamane L, Belhamel M, Benyoucef B, Hamane M (2009) Feasibility study of hydrogen production from wind power in the region of Ghardaia. Int. J. Hydrogen Energy 34:4947–4952

    Article  Google Scholar 

  3. Amendola S C, Sharp-Goldman S L, Saleem Janjua M et al (2000) A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst. Int. J. Hydrogen Energy 10 (25):969–975

    Article  Google Scholar 

  4. Bilgen E (2001) Solar hydrogen from photovoltaic-electrolyzer systems. Energy Convers Manage 42:1047–1057

    Article  Google Scholar 

  5. Bilgen E (2004) Domestic hydrogen production using renewable energy. Solar Energy 77:47–55

    Article  Google Scholar 

  6. Bilodeau A, Agbossou K (2006) Control analysis of renewable energy system with hydrogen storage for residential applications. Journal of Power Sources 162:757–764

    Article  Google Scholar 

  7. Bilgen C, Bilgen E (1984) An assessment on hydrogen production using central receiver solar systems. Int. J. Hydrogen Energy 9 (3):197–204

    Article  Google Scholar 

  8. Deshmukh S S, Boehm R F (2008) Review of modeling details related to renewably powered hydrogen systems. Renewable and Sustainable Energy Review 12:2301–2330

    Article  Google Scholar 

  9. El-Hefnawi SH (1998) Photovoltaic diesel-generator hybrid power system sizing. Renewable Energy 1 (11):33–40

    Article  Google Scholar 

  10. El-Shatter Th F, Eskandar M N, El-Hagry M T (2002) Hybrid PV/fuel cell system design and simulation. Renewable Energy 27:479–485

    Article  Google Scholar 

  11. Friberg R (1993) A photovoltaic solar-hydrogen power plant for rural electrification in India, Part 1: a general survey of technologies applicable within the solar-hydrogen concept. Int. J. Hydrogen Energy 18 (10):853–882

    Article  Google Scholar 

  12. Goldstein L H, Case G R (1978) PVSS-A photovoltaic system simulation program. Solar Energy 21:37–43

    Article  Google Scholar 

  13. Griesshaber W, Sick F (1991) Simulation of Hydrogen-Oxygen Systems with PV for the Self-Sufficient Solar House (in German). FhG-ISE, Freiburg im Breisgau, Germany

    Google Scholar 

  14. Hacatoglu K, Dincer I, Rosen M A (2011) Exergy analysis of a hybrid solar hydrogen system with activated carbon storage, Int. J. Hydrogen Energy 36:3273–3282

    Article  Google Scholar 

  15. Hammache A, Bilgen E (1987) Photovoltaic hydrogen production for remote communities in Northern latitudes. Solar & Wind Technology 2 (4):139–144

    Article  Google Scholar 

  16. Havre K, Gaudernack B, Alm L K, Nygaard T A (1993) Stand-Alone Power Systems based on renewable energy sources. Report no. IFE/KR/F-93/141, Institute for Energy Technology, Kjeller, Norway

    Google Scholar 

  17. Hollenberg W, Chen E N, Lakeram K, Modroukas D (1995) Development of a photovoltaic energy conversion system with hydrogen energy storage. Int. J. Hydrogen Energy 3 (20):239–243

    Article  Google Scholar 

  18. Hug W, Divisek J, Mergel J, Seeger W et al (1992) Highly efficient advanced alkaline electrolyzer for solar operation. Int. J. Hydrogen Energy 17 (9):699–705.

    Article  Google Scholar 

  19. Kélouwani S, Agbossou K, Chahine R (2005) Model for energy conversion in renewable energy system with hydrogen storage. Journal of Power Sources 140:392–399

    Article  Google Scholar 

  20. Kennerud K L (1969) A technique for identifying the cause of performance degradation in cadmium sulfide solar cells. 4th IECEC 561-566

    Google Scholar 

  21. Khan M J, Iqbal M T (2005) Dynamic modeling and simulation of a small wind-fuel cell hybrid energy system. Renewable Energy 30:421–439

    Article  Google Scholar 

  22. Khan MJ, Iqbal MT (2009) Analysis of a small wind-hydrogen stand-alone hybrid energy system. Applied Energy 86:2429–2442

    Article  Google Scholar 

  23. Kolhe M, Agbossou K, Hamelin J, Bose T K (2003) Analytical model for predicting the performance of photovoltaic array coupled with a wind turbine in a stand-alone renewable energy system based on hydrogen. Renewable Energy 28:727–742

    Article  Google Scholar 

  24. Lodhi M A K (1997) Photovoltaics and hydrogen: future energy options. Energy Convers Manage 18 (38):1881–1893

    Article  Google Scholar 

  25. Maclay J D, Brouwer J, Scott Samuelsen G (2007) Dynamic modeling of hybrid energy storage systems coupled to photovoltaic generation in residential applications. J. Power Sources 163:916–925

    Article  Google Scholar 

  26. Mantz R J, De Battista H (2008) Hydrogen production from idle generation capacity of wind turbines. Int. J. Hydrogen Energy 33:4291–4300

    Article  Google Scholar 

  27. Milani M, Montorsi L, Golovitchev V (2008). CombinedHydrogenHeat Steam and Power Generation System. Proc. 16th ISTVS Int. Conference, Turin, November 25-28

    Google Scholar 

  28. Muselli M, Notton G, Louche A (1999) Design of hybrid-photovoltaic power generator, with optimization of Energy Management. Solar Energy 3 (65):143–57

    Article  Google Scholar 

  29. Pedrazzi S, Zini G, Tartarini P (2010) Complete modeling and software implementation of a virtual solar hydrogen hybrid system. Energy Conversion and Management 51 (1):122–129

    Article  Google Scholar 

  30. Sherif S A, Barbir F, Veziroğlu T N (2005) Wind energy and the hydrogen economy — review of the technology. Solar Energy 78:647–660

    Article  Google Scholar 

  31. Siegel R, Howell J R (2002) Thermal Radiation Heat Transfer, Hemisphere, New York

    Google Scholar 

  32. Sopian K, Ibrahim M Z, Wan Daud W R, Othman M Y et al (2009) Performance of a PV-wind hybrid system for hydrogen production. Renewable Energy 34:1973–1978

    Article  Google Scholar 

  33. Sternfeld H J, Heinrich P (1989) A demonstration plant for the hydrogen/oxygen spinning reserve. International Journal of Hydrogen Energy 14:703–716

    Article  Google Scholar 

  34. Sürgevil T, Akpinar E (2005) Modelling of a 5 kW wind energy conversion system with induction generator and comparison with experimental results. Renewable Energy 30:913–929

    Article  Google Scholar 

  35. Ulleberg Ø, Morner S O (1997) Trnsys simulation models for solar hydrogen systems. Solar Energy 4-6 (59):271–279

    Article  Google Scholar 

  36. Vemulapalli G K (1993) Physical Chemistry. Prentice Hall, New Delhi

    Google Scholar 

  37. Zhang J, Fisher T S, Veeraraghavan Ramanchandran P, Gore J P et al (2005) A review of heat transfer issues in hydrogen storage technologies. J Heat Transfer 127:1391–1399

    Article  Google Scholar 

  38. Zhou L, Zhang J (2001) A simple isotherm equation for modeling the adsorption equilibria on porous solids over wide temperature ranges. Langmuir 17:5503–5507

    Article  Google Scholar 

  39. Zhou L, Zhou Y, Sun Y (2004) Enhanced storage of hydrogen at the temperature of liquid nitrogen. Int. J. Hydrogen Energy 29:319–322

    Article  Google Scholar 

  40. Zhou L (2005) Progress and problems in hydrogen storage methods. Renewable and Sustainable Energy Reviews 9:395–408

    Article  Google Scholar 

  41. Zhou L, Zhou Y, Sun Y (2006) Studies on themechanism and capacity of hydrogen uptake by physisorption-based materials. Int. J. of Hydrogen Energy 31:259–264

    Article  Google Scholar 

  42. Zhou L, Zhou Y (1998) Linearization of adsorption isotherms for high-pressure applications. Chem. Eng. Sci. 14 (53):2531–2536

    Google Scholar 

  43. Zini G, Tartarini P (2009) Hybrid systems for solar hydrogen: a selection of case-studies. Applied Thermal Engineering 29:2585–2595

    Article  Google Scholar 

  44. Zini G, Marazzi R, Pedrazzi S, Tartarini P (2009) Solar hydrogen hybrid system with carbon storage, International Conference on Hydrogen Production ICH2P-09, Toronto, 2-6 May

    Google Scholar 

  45. Zini G, Tartarini P (2010) A solar hydrogen hybrid system with activated carbon storage. International Journal of Hydrogen Energy 35 (10):4909–4917

    Article  Google Scholar 

  46. Zini G, Tartarini P (2010) Wind-hydrogen energy stand-alone system with carbon storage: Modeling and simulation. Renewable Energy 35 (11):2461–2467

    Article  Google Scholar 

  47. Züttel A, Nützenadel Ch, Sudan P, Mauron Ph et al (2002). Hydrogen sorption by carbon nanotubes and other carbon nanostructures. Journal of Alloys and Compounds (330–332):676–682

    Article  Google Scholar 

  48. Züttel A, Wenger P, Rentsch S, Sudan P et al (2003) LiBH4 a new hydrogen storage material. J. Power Sources 1-2 (118):1–7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Zini, G., Tartarini, P. (2012). Study and Simulation of Solar Hydrogen Energy Systems. In: Solar Hydrogen Energy Systems. Springer, Milano. https://doi.org/10.1007/978-88-470-1998-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1998-0_9

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1997-3

  • Online ISBN: 978-88-470-1998-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics