Other Electricity Storage Technologies

  • Gabriele Zini
  • Paolo Tartarini


Finding an efficient solution to store electric energy is an important goal to achieve for both small and large-scale applications. This chapter explores some of the best proposals coming from the research in the field, such as electrochemical batteries, compressed air, pumped water, pumped heat, super-capacitors and other innovative technologies.


Levitation Force Hydroelectric Plant Vanadium Redox Flow Batterie Superconducting Magnetic Energy Storage Redox Flow Batterie 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Besenhard JO, Eichinger G (1976) High Energy Density Lithium Cells. Part I. Electrolytes and Anodes. J Electroanal Chem 68 (1):1–18CrossRefGoogle Scholar
  2. 2.
    Besenhard J O, Eichinger G (1976) High Energy Density Lithium Cells. Part II. Cathodes and Complete Cells. J Electroanal Chem 72(1):1–31CrossRefGoogle Scholar
  3. 3.
    Bilodeau A, Agbossou K (2006) Control analysis of renewable energy system with hydrogen storage for residential applications. Journal of Power Sources 162:757–764CrossRefGoogle Scholar
  4. 4.
    Conway B E (1999) Electrochemical Supercapacitors, Plenum Publishing, New YorkGoogle Scholar
  5. 5.
    Huang K-L, Li X, Liu S, Tan N, Chen L (2008) Research progress of vanadium redox flow battery for energy storage in China. Renewable Energy 33:186–192CrossRefGoogle Scholar
  6. 6.
    Jin J X (2007) HTS energy storage techniques for use in distributed generation systems. Physica C 460–462:1449-1450Google Scholar
  7. 7.
    Koshizuka N, Ishikawa F, Nasu H, Murakami M et al (2003) Progress of superconducting bearing technologies for flywheel energy storage systems. Physica C (386):444–450Google Scholar
  8. 8.
    Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochimica Acta 45:2483–2498CrossRefGoogle Scholar
  9. 9.
    Lee K, Yi J, Kim B, Ko J et al (2008) Micro-energy storage system using permanent magnet and high-temperature superconductor. Sensors and Actuators A 143:106–112CrossRefGoogle Scholar
  10. 10.
    Linden D, Reddy T B (eds.) (2002) Handbook of Batteries, 3rd ed. McGraw-Hill, New YorkGoogle Scholar
  11. 11.
    Martha S K, Hariprakash B, Gaffoor S A, Amblavanan S et al. (2005) Assembly and performance of hybrid-VRLA cells and batteries. Journal of Power Sources (144) 2:560–567CrossRefGoogle Scholar
  12. 12.
    Muneret X, Gobé V, Lemoine C (2005) Influence of float and charge voltage adjustment on the service life of AGM VRLA batteries depending on the conditions of use. Journal of Power Sources 144 (2):322–328CrossRefGoogle Scholar
  13. 13.
    Pascoe P E, Anbuki A H (2004) A VRLA battery simulation model. Energy Conversion and Management 45 (7–8):1015–1041CrossRefGoogle Scholar
  14. 14.
    Peltier R (2011) Energy storage enables just-in-time generation. Power, AprilGoogle Scholar
  15. 15.
    Sharma P, Bhatti T S (2010) A review on electrochemical double-layer capacitors. Energy Conversion and Management 51:2901–2912CrossRefGoogle Scholar
  16. 16.
    Silberberg M (2006) Chemistry: The Molecular Nature of Matter and Change, 4th ed. McGraw-Hill Education, New YorkGoogle Scholar
  17. 17.
    Skyllas-Kazacos M, Rychcik M, Robins R et al (1986) New all-vanadium redox cell. J Electrochem Soc 133:1057–1058CrossRefGoogle Scholar
  18. 18.
    Sum E, Skyllas-Kazacos M (1985) A study of the V(II)/V(III) redox couple for redox flow cell applications. J Power Sources 15:179–190CrossRefGoogle Scholar
  19. 19.
    Sum E, Rychcik M, Skyllas-Kazacos M (1985) Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery. J Power Sources 16:85–95CrossRefGoogle Scholar
  20. 20.
    Sung T H, Han S C, Han Y H, Lee J S et al (2002) Designs and analyses of flywheel energy storage systems using high-Tc superconductor bearings. Cryogenics 42:357–362CrossRefGoogle Scholar
  21. 21.
    Ulleberg Ø (1998) Stand Alone Power Systems for the Future: Optimal Design, Operation and Control of Solar Hydrogen Energy Systems. Ph.D. thesis, Norwegian University of Science and Technology, TrondheimGoogle Scholar
  22. 22.
    Whittingham M S (1976) Electrical Energy Storage and Intercalation Chemistry. Science 192 (4244): 1126–1127CrossRefGoogle Scholar
  23. 23.
    Wolsky A M (2002) The status and prospects for flywheels and SMES that incorporate HTS. Physica C (372–376):1495-1499Google Scholar
  24. 24.
    Zheng J P, Jow T R (1996) High energy and high power density electrochemical capacitors. Journal of Power Sources 62:155–159CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Gabriele Zini
    • 1
  • Paolo Tartarini
    • 1
  1. 1.Dipartimento di Ingegneria Meccanica e CivileUniversità di Modena e Reggio EmiliaItaly

Personalised recommendations