Enabling “hard” technologies for future wireless

  • Dominique Noguet
  • Marc Belleville
  • Venkatesh Ramakrishnan
  • Guido Masera
  • Dominique Morche
  • Chistophe Moy
  • Gerd Asheid


Wireless technology has been benefiting from the advances the silicon technology has offered in the 90s and 00s. The whole telecommunication mutation from the analog domain to the digital realm has in fact been made possible by theminiaturisation of transistors, leading to higher density and complexity though with low power efficient ICs. In turn, this move to digital communication has created the boom of the digital ICT at all layers, from broadband communications to multimedia services. With this in mind, it would not make sense to foresee what telecommunication will offer in the future without considering the trends in silicon technology research and industry.


Hardware Platform Software Define Radio Channel Decoder General Purpose Processor Sphere Decode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Moore G.: Cramming more components onto integrated circuits. In: Proc. IEEE 86(1), pp. 82–85 (1998).CrossRefGoogle Scholar
  2. 2.
    Alaus L., Noguet D., Palicot J.: A reconfigurable LFSR for tri-standard SDR transceiver, architecture and complexity analysis. In: EUROMICRO Digital System Design (DSD), Parma, Italy (2008).Google Scholar
  3. 3.
    Alaus L., Palicot J., Roland C., Louet Y., Noguet D.: Promising technique of parametrisation for reconfigurable radio, the common operators technique: Fundamentals and examples. Journal of Signal Processing Systems (2008).Google Scholar
  4. 4.
    Belleville M., Faynot O.: Evolutionof deep submicron bulk and SOI technologies in low power eletronics design. In: Piguet C. (Ed.): Low-Power Electronics Design. CRC Press, Boca Raton, FL (2004).Google Scholar
  5. 5.
    Bondé L., Dumoulin C., Dekeyser J.L.: Metamodels and MDA transformations for embedded systems. In: Proc. Languages for Formal Specification and Verification, Forum on Specification & Design Languages, Lille, France (2004).Google Scholar
  6. 6.
    Cavin R.K., Zhirnov V.V.: Future devices for information processing. In: Proc. Eur. Solid-State Device Research Conf., Grenoble, France (2005).Google Scholar
  7. 7.
    Chen T.C.: Where CMOS is going: Trendy hype vs. real technology. ISSCC 2006 Digest of Technical Papers, pp. 22–28 (2006).Google Scholar
  8. 8.
    Declerck G.: A look into the future of nanoelectronics. In: Proc. Symp. VLSI Technology Digest of Technical papers, Kyoto, Japan (2005).Google Scholar
  9. 9.
    Fitzek F.H.P., Katz M., Zhang Q.: Cellular controlled short-range communication for cooperative P2P networking. Wireless Personal Communications (2008).Google Scholar
  10. 10.
    Godard L., Moy C., Palicot J.: An executable meta-model of a hierarchical and distributed architecture management for the design of cognitive radio equipments. Annals of Telecommunications 64(7–8), pp. 463–482 (2009).CrossRefGoogle Scholar
  11. 11.
    Hutchby J.A., Bourianoffg. I., Zhirnov V.V., Brewer J.E.: Extending the road beyondCMOS. IEEE Circuits and DevicesMagazine 18(2), pp. 28–41 (2002).CrossRefGoogle Scholar
  12. 12.
    International Technology Roadmap for Semiconductors. [Online]. Available: http://www.itrs.net.Google Scholar
  13. 13.
    JTRS. [Online]. Available: http://sca.jpeojtrs.mil/.Google Scholar
  14. 14.
    Lecomte S., Guillouard S., Moy C., Leray P., Soulard P.: A co-design methodology based on model driven architecture for real time embedded systems. Mathematical and Computer Modelling Journal, no. 3–4, pp. 471–484 (2011).Google Scholar
  15. 15.
    De Man H.: Ambient intelligence:Gigascale dreams and nanoscale realities. ISSCC 2005 Digest of Technical Papers, pp. 29–35 (2005).Google Scholar
  16. 16.
    Report from the CATRENE scientific committee: Towards a “More-than-Moore” roadmapGoogle Scholar
  17. 17.
    Department Of Defense Interface Standard, Interoperability and performance standards for data modems. Tech. Rep. MIL-STD-188-110B, Department Of Defense, USA (2000).Google Scholar
  18. 18.
    Morche D., Belleville M., Delaveaud C., Ktenas D., Mayrargue S., Po F.C.W.: Future needs in RF reconfiguration from a system point of view. In: Proc. IEEE Bipolar/BiCMOS Circuits and Technology Meeting, Capri, Italy (2009).Google Scholar
  19. 19.
    Moy C.: High-level design approach for the specification of cognitive radio equipments management APIs. Journal of Network and Systems Management 18(1), pp. 64–96 (2010).CrossRefGoogle Scholar
  20. 20.
    Naoues M., Noguet D., Louët Y., Grati K., Ghazel A.: An efficient flexible common operator for FFT and Viterbi algorithms. In: Proc. IEEE Veh. Technol. Conf., Budapest, Hungary (2011).Google Scholar
  21. 21.
    Next GenerationMobile Networks (NGMN) Alliance. [Online]. Available: http://www.ngmn.org/.Google Scholar
  22. 22.
    IST-ORACLE, Overall complexity guidelines of an OR Terminal. Tech. Rep. (2009).Google Scholar
  23. 23.
    Ramakrishnan V., et al.: Efficientand portable SDR waveform development:The nucleus concept. In: Proc. Military Commun. Conf., Boston, MA (2009).Google Scholar
  24. 24.
    Rodriguez A.: Defense Communications: US MIL-STD-188-110B Waveform Simulation, July 2003. [Online]. Available: http://www.mathworks.com.Google Scholar
  25. 25.
    Software Defined Radio. [Online]. Available: http://www.sdrforum.org/.Google Scholar
  26. 26.
    Singh S., et al.: SCA based implementation of STANAG 4285 in a joint effort under the NATO RTO/IST panel. In: SDR Technical Conf., Washington, DC (2008).Google Scholar
  27. 27.
    Walsh E., Grimes R., Walsh P.: The performance of active cooling in a mobile phone. In: Int. Conf. Thermal and Thermo mechanical Phenomena in Electronic Systems, Orlando, FL (2008).Google Scholar
  28. 28.
    Wimax TI Library. [Online]. Available: http://www.ti.com/corp/docs/landing/wimax/index.htm.Google Scholar
  29. 29.
    Witte E.M., et al.: SDR baseband processingportability:A case study. In: KarlsruheWorkshop on Software Radios, Karlsruhe, Germany (2008).Google Scholar
  30. 30.
    Wurm P.: A digital LINC radio transmitter architecture for opportunistic radio. In: IEEE Veh. Technol. Conf., Barcelona, Spain (2009).Google Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Dominique Noguet
    • 1
  • Marc Belleville
    • 1
  • Venkatesh Ramakrishnan
    • 2
  • Guido Masera
    • 3
  • Dominique Morche
    • 1
  • Chistophe Moy
    • 4
    • 5
  • Gerd Asheid
    • 2
  1. 1.CEA-LETI, Commisariat à l’ÉnergieAtomique- Laboratoire d’électronique des technologies de l’informationGrenobleFrance
  2. 2.RWTHAachenGermany
  3. 3.CNITConsorzio Nazionale Interuniversitario per le TelecomunicazioniTorinoItaly
  4. 4.CNRS/SupelecNational Center of Scientific ResearchFrance
  5. 5.Higher School of ElectricityFrance

Personalised recommendations