Bandwidth and energy efficient radio access

  • Andreas Polydoros
  • Hanna Bogucka
  • Piotr Tyczka
  • Carles Navarro Manchon


Within the last two decades, the amount and diversity of services provided by wireless systems has been drastically transformed. Mobile (cellular) communication, for instance, is nowadays offering a wide variety of multimedia-data services, in contrast to the limited voice and very simple data services offered in the past. In wireless local-area networks (WLAN), as another example, the ability to be on-line without needing a wired connection is not sufficient any more, and users expect to experience similar data speeds and quality of service (QoS) as with a wired connection. This has lead to a rapid increase in data-rate requirements (“broadband connectivity”) in the standards of new and upcoming wireless communication systems.


Cognitive Radio Fading Channel Channel Estimation Power Allocation Channel Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ericsson T.: A Gaussian channel with slow fading. IEEE Trans. Information Theory 16(3), pp. 353–355 (1970).MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ozarow L.H., Shamai S., Wyner A.D.: Informationtheoretic considerationsfor cellularmobile radio. IEEE Trans. Veh. Technol. 43(2), pp. 359–378 (1994).CrossRefGoogle Scholar
  3. 3.
    Goldsmith A.J., Varaiya P.P.: Capacity of fading channels with channel side information. IEEE Trans. Information Theory 43(6), pp. 1986–1992 (1997).MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Borade S., Zheng L.:Wideband fading channels with feedback. In: Proc. Allerton Conference on Communication, Control, and Computing, Monticello, IL (2004).Google Scholar
  5. 5.
    Abou-Faycal I., Trott M.D., Shamai S. (Shitz): The capacity of discrete-time memoryless Rayleigh fading channels. IEEE Trans. Information Theory 47(3), pp. 1290–1301 (2001).MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Gursoy M.C., Poor H.V., Verdú S.: The noncoherent Rician fading channel — Part I: Structure of the capacity-achieving input. IEEE Trans. Wireless Commun. 4(5), pp. 2193–2206 (2005).CrossRefGoogle Scholar
  7. 7.
    Gursoy M.C., Poor H.V., Verdú S.: The noncoherent Rician fading channel — Part II: Spectral efficiency in the low power regime. IEEE Trans. Wireless Commun. 4(5), pp. 2207–2221 (2005).CrossRefGoogle Scholar
  8. 8.
    Gursoy M.C., Poor H.V., Verdú S.: Spectral efficiency of peak power limited Rician block-fading channels. In: Proc. IEEE Int. Symposium on Information Theory (ISIT), Chicago, IL (2004).Google Scholar
  9. 9.
    Huang J., Meyn S.P.: Characterization and computation of optimal distributions for channel coding. IEEE Trans. Information Theory, 51(7), p. 2336–2351 (2005).MathSciNetCrossRefGoogle Scholar
  10. 10.
    Marzetta T.L., Hochwald B.M.: Capacity of a mobile multipleantenna communication link in Rayleigh flat fading. IEEE Trans. Information Theory 45(1), pp. 139–157 (1999).MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Zheng L., Tse D.N.C.: Communication on the Grassman manifold: A geometric approach to the noncoherent multiple-antenna channel. IEEE Trans. Information Theory 48(2), pp. 359–383 (2002).MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Médard M.: The effect upon channel capacity in wireless communications of perfect and imperfect knowledge of channel. IEEE Trans. Information Theory 46(3), pp. 933–946 (2000).MATHCrossRefGoogle Scholar
  13. 13.
    Lapidoth A., Shamai S. (Shitz): Fading channels: How perfect need ‘perfect side information’ be?. IEEE Trans. Information Theory 48(5), pp. 1118–1134 (2002).MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Verdú S.: Spectral efficiency in the wideband regime. IEEE Trans. Information Theory 48(6), pp. 1319–1343 (2002).MATHCrossRefGoogle Scholar
  15. 15.
    Lapidoth A., Moser S.M.: Capacity bounds via duality with applications to multiple-antenna systems on flat-fading channels. IEEE Trans. Information Theory 49(10), pp. 2426–2467 (2003).MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gursoy M.: On the capacity and energy efficiency of training-based transmissions over fading channels. IEEE Trans. Information Theory 55(10), pp. 4543–4567 (2009).MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hassibi B., Hochwald B.M.: How much training is needed in multiple-antennawireless links. IEEE Trans. Information Theory 49(4), pp. 951–963 (2003).MATHCrossRefGoogle Scholar
  18. 18.
    Shannon C.E.: Channels with side information at the transmitter. IBMJ. Res.Dev. 2, pp. 289–293 (1958).MathSciNetCrossRefGoogle Scholar
  19. 19.
    Biglieri E., Proakis J., Shamai S. (Shitz): Fading channels: Information-theoretic and communications aspects. IEEE Trans. Information Theory 44(6), pp. 2619–2692 (1998).MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Tse D., Viswanath P.: Fundamentals of Wireless Communication. Cambridge Univ. Press, Cambridge, UK (2005).MATHCrossRefGoogle Scholar
  21. 21.
    Klang G. et al.: Identification of radio-link technologies. IST-2003-507581WINNER, D2.1 Public Deliverable.Google Scholar
  22. 22.
    Steele R., Webb W.: Variable rate QAM for data transmission over Rayleigh fading channels. In: Proc. IEEE Wireless, Calgary, Canada, pp. 1–14 (1991).Google Scholar
  23. 23.
    Morinaga N., Nakagawa M., Kohno R.: New concepts and technologies for achieving highly reliable and high-capacity multimedia wireless communication systems. IEEE Commun. Mag. 35, pp. 34–41 (1997).CrossRefGoogle Scholar
  24. 24.
    Chua S.-G., Goldsmith A.J.: Adaptive coded modulation for fading channels. In: Proc. IEEE Int. Conf. Commun., Montreal, Canada (1997).Google Scholar
  25. 25.
    Goldsmith A.J., Chua S.-G.: Variable-rate variable-power MQAM for fading channels. IEEE Trans. Commun., 45(10), pp. 1218–1230 (1997).CrossRefGoogle Scholar
  26. 26.
    Chung S.T., Goldsmith A.J.: Degrees of freedomin adaptive modulation: A unified view. IEEE Trans. Commun. 49(9), pp. 1561–1571 (2001).MATHCrossRefGoogle Scholar
  27. 27.
    Jafar S.A., Vishwanath S., Goldsmith A.J.: Through put maximization with multiple codes and partial outages. In: Proc. Global Telecommun. Conf., San Antonio, TX (2001).Google Scholar
  28. 28.
    Hanzo L., Wong C.H., Yee M.S.: Adaptive wireless transceivers: Turbo-coded, turboequalised and space-time coded TDMA, CDMA and OFDM systems. Wiley, New York, NY (2002).Google Scholar
  29. 29.
    Keller T., Hanzo L.: Adaptive modulation techniques for duplex OFDM transmission. IEEE Trans. Veh. Technol. 49(5), pp. 1893–1906 (2000).CrossRefGoogle Scholar
  30. 30.
    Chow P.S, Cioffi J.M., Bingham J.A.C.: A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels. IEEE Trans. Commun. 43(2–4), pp. 773–775 (1995).CrossRefGoogle Scholar
  31. 31.
    Fisher R.F.H., Huber B.: A new loading algorithmfor discrete multitone transmission. In: Proc. Global Telecommun. Conf., London, UK (1996).Google Scholar
  32. 32.
    Rohling H., Grundheid R.: Performance of an OFDM-TDMA mobile communication system. In: Proc. Global Telecommun. Conf., London, UK (1996).Google Scholar
  33. 33.
    Münz G., Pfletschinger S., Speidel J.: An efficient waterfilling algorithm for multiple access OFDM. In: Proc. Global Telecommun. Conf., Taipei, Taiwan (2002).Google Scholar
  34. 34.
    Pfletschinger S., Münz G., Speidel J.: Efficient subcarrier allocation for multiple access in OFDM systems. In: Proc. Int. OFDM Workshop, Hamburg, Germany (2002 ).Google Scholar
  35. 35.
    Catreux S., Driessen P.F., Greenstein L.J.: Attainable throughput of an interference-limited multiple-input multiple-output (MIMO) cellular system. IEEE Trans. Commun., 49 6(8), pp. 1307–1311 (2001).CrossRefGoogle Scholar
  36. 36.
    Liew T.H., Hanzo L.: Space-time block coded adaptive modulation aided OFDM. In: Proc. Global Telecommun. Conf., San Antonio, TX (2001).Google Scholar
  37. 37.
    Dlugaszewski Z., Piatyszek A., Wesolowski K.:Adaptivemulti-coded OFDM transmission for selective fading channels. In: Proc. IST Mobile & Wireless Communications Summit, Aveiro, Portugal (2003).Google Scholar
  38. 38.
    Wesolowski K., Dlugaszewski Z.: Information theory aspects of digital transmission over fading channels. In: Proc. National Symposium of Radio Science, Poznan, Poland (2002).Google Scholar
  39. 39.
    Hu S., Duel-Hallen A.: Combined adaptive modulation and transmitter diversity using long range prediction for flat fading mobile radio channels. In: Proc. Global Telecommun. Conf., San Antonio, TX (2001).Google Scholar
  40. 40.
    Holliday T., Goldsmith A., Glynn P.: Wireless link adaptation policies: QoS for deadline constrained traffic with imperfect channel estimates. In: Proc. Int. Commun. Conf., New York, NY (2002).Google Scholar
  41. 41.
    Falahati S., Svensson A., Sternad M., Mei H.: Adaptive Trellis-coded modulation over predicted flat fading channels. In: Proc. IEEE Veh. Technol. Conf., Orlando, FL (2003).Google Scholar
  42. 42.
    Falahati S., Svensson A., Ekman T., Sternad M.: Adaptive modulation systems for predicted wireless channels. IEEE Trans. Commun. 52(2), pp. 307–316 (2004).CrossRefGoogle Scholar
  43. 43.
    Koutsopoulos I., Tassiulas L.: Channel state-adaptive techniques for throughput enhancement in wireless broadbandnetworks. In: Proc. Conferenceon Computer Communications, Anchorage, AK (2001).Google Scholar
  44. 44.
    Lim C.H., Cioffi J.M.: Performance of the adaptive rate MQAM with on/off power control. IEEE Communications Letters 5, pp. 16–18 (2001).CrossRefGoogle Scholar
  45. 45.
    Tang F., Deneire L., Engels M., Moonen M.: Adaptive link adaptation. In: Proc. Global Telecommun. Conf., San Antonio, TX (2001).Google Scholar
  46. 46.
    Tralli V., Vaccari A., Verdone R., Andrisano O.: Adaptive time and frequency resource assignment with COFDM for LMDS systems. IEEE Trans. Commun. 49(2), pp. 235–238 (2001).MATHCrossRefGoogle Scholar
  47. 47.
    Ulukus S., Biglieri E., Win M.Z.: Optimum modulation and multicode formats in CDMA systems with multiuser receivers. In: Proc. Conference on Computer Communications, Anchorage, AK (2001).Google Scholar
  48. 48.
    Caire G., Shamai S.: On the capacity of some channels with channel state information. IEEE Trans. Information Theory 45(9), pp. 2007–2019 (1999).MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Ephremides A.: Energy concerns in wireless networks. IEEE Wireless Commun. 9(4), pp. 48–59 (2002).CrossRefGoogle Scholar
  50. 50.
    Minto M., Ragazzi D., Agarossi L., Giangaspero L.: Minimum transmission power algorithm for OFDM-based flexible systems. In: Proc. Workshop on Broadband Wireless Ad-Hoc Networks and Services, Sophia-Antipolis, France (2002).Google Scholar
  51. 51.
    Polydoros A., Rautio J., Razzano G., Bogucka H., Ragazzi D., Dallas P.I., Mammela A., Benedix M., Lobeira M., Agarossi L.:WIND-FLEX: Developing a novel test-bed for exploring flexible radio concepts in an indoor environment. IEEE Commun. Mag. 41(7), pp. 116–122 (2003).CrossRefGoogle Scholar
  52. 52.
    Dlugaszewski Z., Wesolowski K., Bogucka H., Tyczka P., Piatyszek A., Polydoros A., Nikitopoulos K., Dagres Y., Paltenghi G., Giangaspero L., Benedix M., Ertel J: Information theory results derived from WIND-FLEX implementation. 4.6 Public Deliverable of the IST-1999-10025 projectWIND-FLEX (2002).Google Scholar
  53. 53.
    Wong C.Y., Cheng R.S., Ben Letaief K., Murch R.D.: Multiuser OFDM with adaptive subcarrier, bit, and power allocation. IEEE J. Select. Areas Commun. 17, pp. 1747–1758 (1999).CrossRefGoogle Scholar
  54. 54.
    Johansson M.: Diversity-enhanced equal access — Considerable throughput gains with 1-bit feedback, in Proc. IEEE Workshop on Signal Processing Advances in Wireless Communications, Lisboa, Portugal, July 2004.Google Scholar
  55. 55.
    Baum K.L., Kostas T.A., Sartori P.J., Clas-son B.K.: Performance characteristics of cellular systems with different link adaptation strategies. IEEE Trans. Veh. Technol. 52(6), pp. 1497–1507 (2003).CrossRefGoogle Scholar
  56. 56.
    Berrou C., Glavieux A., Thitimajshima P.: Near Shannon limit error correcting coding andGoogle Scholar
  57. 57.
    Wang X., Poor H.V.: Iterative (turbo) soft interference cancellation and decoding for coded CDMA. IEEE Trans. Commun. 47(7), pp. 1046–1061 (1999).CrossRefGoogle Scholar
  58. 58.
    Wehinger J., Mecklenbräuker C.: Iterative CDMA multiuser receiver with soft decisiondirected channel estimation. IEEE Trans. Signal Process. 54(10), pp. 3922–3934 (2006).CrossRefGoogle Scholar
  59. 59.
    Tuchler M., Koetter R., Singer A.C.: Turbo equalization: Principles and new results. IEEE Trans. Commun. 50(5), pp. 754–767 (2002).CrossRefGoogle Scholar
  60. 60.
    Kschischang F., Frey B., Loeliger H.-A.: Factor graphs and the sum-product algorithms. IEEE Trans. Information Theory 47(2), pp. 498–519 (2001).MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Attias H.: A variational Bayesian framework for graphical models. Advances in Neural Information Processing Systems, pp. 209–215 (2000).Google Scholar
  62. 62.
    Beal M.: Variational algorithms for approximate inference. Ph.D. dissertation, University of Cambridge (2003).Google Scholar
  63. 63.
    Cover T.M., Thomas J.A.: Elements of Information Theory, 2nd ed. Wiley Interscience, New York, NY (2006).MATHGoogle Scholar
  64. 64.
    McEliece R., MacKay D., Cheng J.: Turbo decoding as an instance of Pearl’s belief ‘propagation’ algorithms. IEEE J. Select. Areas Commun. 16(2), pp. 140–152 (1998).CrossRefGoogle Scholar
  65. 65.
    Worthen A.P., Stark W.E.: Unified design of iterative receivers using factor graphs. IEEE Trans. Information Theory 47(2), pp. 843–849 (2001).CrossRefGoogle Scholar
  66. 66.
    Minka T.: Divergence measures and message passing. Microsoft Research Ltd., Tech. Rep. (2005).Google Scholar
  67. 67.
    Boutros J., Caire G.: Iterative multiuser joint decoding: Unified framework and asymptotic analysis. IEEE Trans. Information Theory 48(7), pp. 1772–1793 (2002).MathSciNetMATHCrossRefGoogle Scholar
  68. 68.
    Novak C., Matz G., Hlawatsch F.: A factor graph approach to joint iterative data detection and channel estimation in pilot-assistedidma transmissions. In: Proc. IEEE Int. Conf. Acoust., Speech, Signal Process, Las Vegas, NV (2008).Google Scholar
  69. 69.
    Stefanatos S., Katsaggelos A.: Joint data detection and channel tracking for OFDM systems with phase noise. IEEE Trans. Signal Process. 56(9), pp. 4230–4243 (2008).MathSciNetCrossRefGoogle Scholar
  70. 70.
    Hu B., Land I., Rasmussen L., Piton R., Fleury B.: A divergence minimization approach to joint multiuser decoding for coded CDMA. IEEE J. Select. Areas Commun. 26(3), pp. 432–445 (2008).CrossRefGoogle Scholar
  71. 71.
    Gallager R.G.: Low density parity check codes. IRE Trans. Inform. Theory 8, pp. 21–28 (1962).MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Bahl L., Clocke J., Jelinek F., Raviv J.: Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans. Information Theory 20(3), pp. 284–287 (1974).MathSciNetMATHCrossRefGoogle Scholar
  73. 73.
    Robertson P., Villebrun E., Hoeher P.: A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain. In: Proc. IEEE Int. Conf. Commun., Seattle, WA (1995).Google Scholar
  74. 74.
    Hagenauer J., Hoeher P.: A Viterbi algorithm with soft-decision outputs and its applications. In: Proc. IEEE Global Telecommun. Conf., Dallas, TX (1989).Google Scholar
  75. 75.
    Wiberg N.: Codes and decoding on general graphs. Ph.D. dissertation, Dept. of Electrical Engineering, Linköping, Sweden, 1996, Linköping Studies in Science and Technology.Google Scholar
  76. 76.
    Fossorier M.P.C., Mihaljevic M., Imai H.: Reduced complexity iterative decoding of lowdensity parity check codes based on belief propagation. IEEE Trans. Commun. 47(5), pp. 673–680 (1999).CrossRefGoogle Scholar
  77. 77.
    NEWCOM++ WPR.4, DR.4.1: State of the art. Tech. Rep. (2008).Google Scholar
  78. 78.
    Mitola J.: Cognitive radio: An integrated agent architecture for software defined radio. Ph.D. dissertation, Royal Institute of Technology (KTH), Sweden (2000).Google Scholar
  79. 79.
    Mitola J.: Cognitive radio architecture: The engineering foundations of radio XML. Wiley & Sons, Hoboken, NJ (2006).CrossRefGoogle Scholar
  80. 80.
    Haykin S.:Cognitive radio: Brain-empoweredwireless communications. IEEEJ. Select. Areas Commun. 23(2), pp. 201–220 (2005).CrossRefGoogle Scholar
  81. 81.
    Hanzo L., Munster M., Choi B.J., Keller T.: OFDM and MC-CDMA for broadband multi-user communications, WLANs and broadcasting. Wiley & Sons, Hoboken, NJ (2003).CrossRefGoogle Scholar
  82. 82.
    Rajbanshi R., Wyglinski A.M., Minden G.J.: OFDM-based cognitive radios for dynamic spectrum access networks. In: Hossain E., Bhargava V.K. (Eds.): Cognitive Wireless Communication Networks. New York, NY: Springer Science and Business Media (2007).Google Scholar
  83. 83.
    Mahmoud H.A., Yucek T., Arslan H.: OFDM for cognitive radio: Merits and challenges. IEEE Wireless Communications 16(2), pp. 6–14 (2009).CrossRefGoogle Scholar
  84. 84.
    Brandes S., Cosovic I., Schnell M.: Reduction of out-of-band radiation in OFDM systems by insertion of cancellation carriers. IEEE Commun. Letters 10(6), pp. 420–422 (2006).CrossRefGoogle Scholar
  85. 85.
    Kozek W., Molisch A.F.: Nonorthogonal pulseshapes formulticarrier communications in doubly dispersive channels. IEEE J. Select. Areas Commun. 16(8), pp. 1579–1589 (1998).CrossRefGoogle Scholar
  86. 86.
    Hunziker T., Dahlhaus D.: Iterative symbol detection for bandwidth efficient nonorthogonal multicarrier transmission. In: Proc. IEEE Veh. Technol. Conf., Tokyo, Japan (2000).Google Scholar
  87. 87.
    IST-027960 URANUS, D3.1: GMCR transceiver for air interfaces in single mode operation. Tech. Rep. (2007).Google Scholar
  88. 88.
    Goldsmith A.: Wireless Communications. Cambdrige, UK: Cambridge Univ. Press (2005).Google Scholar
  89. 89.
    MacKenzie A.B., DaSilva L.A.: Game Theory for Wireless Engineers. Morgan & Claypool, San Rafael, CA (2006).Google Scholar
  90. 90.
    Srivastava V., Neel J., MacKenzie A.B., Menon R., DaSilva L. A., Hicks J.E., Reed J.H., Gilles R.P.: Using game theory to analyze wireless ad hoc networks. IEEE Commun. Surveys & Tutorials, 7(4), pp. 46–56 (2005).CrossRefGoogle Scholar
  91. 91.
    Perlaza S.M., Debbah M., Lasaulce S., Bogucka H.: On the benefits of bandwidth limiting in decentralized vector multiple access channels. In: Proc. Int. Conf. Cognitive Radio Oriented Wireless Networks and Communications, Hannover, Germany (2009).Google Scholar
  92. 92.
    Bogucka H.: Linear and arithmetically-progressivetaxation of spectrum resources in cognitive OFDMA. In: Proc. Int. Workshop on Game Theory in Communication Networks, Pisa, Italy (2009).Google Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Andreas Polydoros
    • 1
  • Hanna Bogucka
    • 2
  • Piotr Tyczka
    • 2
  • Carles Navarro Manchon
    • 3
  1. 1.IASA, Institute of Accelerating Systems and ApplicationsAthensGreece
  2. 2.PUT, Poznan University of TechnologyPoland
  3. 3.AAU, Aalborg UniversityDenmark

Personalised recommendations