Skip to main content

Bandwidth and energy efficient radio access

  • Chapter
The Newcom++ Vision Book

Abstract

Within the last two decades, the amount and diversity of services provided by wireless systems has been drastically transformed. Mobile (cellular) communication, for instance, is nowadays offering a wide variety of multimedia-data services, in contrast to the limited voice and very simple data services offered in the past. In wireless local-area networks (WLAN), as another example, the ability to be on-line without needing a wired connection is not sufficient any more, and users expect to experience similar data speeds and quality of service (QoS) as with a wired connection. This has lead to a rapid increase in data-rate requirements (“broadband connectivity”) in the standards of new and upcoming wireless communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ericsson T.: A Gaussian channel with slow fading. IEEE Trans. Information Theory 16(3), pp. 353–355 (1970).

    Article  MathSciNet  Google Scholar 

  2. Ozarow L.H., Shamai S., Wyner A.D.: Informationtheoretic considerationsfor cellularmobile radio. IEEE Trans. Veh. Technol. 43(2), pp. 359–378 (1994).

    Article  Google Scholar 

  3. Goldsmith A.J., Varaiya P.P.: Capacity of fading channels with channel side information. IEEE Trans. Information Theory 43(6), pp. 1986–1992 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  4. Borade S., Zheng L.:Wideband fading channels with feedback. In: Proc. Allerton Conference on Communication, Control, and Computing, Monticello, IL (2004).

    Google Scholar 

  5. Abou-Faycal I., Trott M.D., Shamai S. (Shitz): The capacity of discrete-time memoryless Rayleigh fading channels. IEEE Trans. Information Theory 47(3), pp. 1290–1301 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  6. Gursoy M.C., Poor H.V., Verdú S.: The noncoherent Rician fading channel — Part I: Structure of the capacity-achieving input. IEEE Trans. Wireless Commun. 4(5), pp. 2193–2206 (2005).

    Article  Google Scholar 

  7. Gursoy M.C., Poor H.V., Verdú S.: The noncoherent Rician fading channel — Part II: Spectral efficiency in the low power regime. IEEE Trans. Wireless Commun. 4(5), pp. 2207–2221 (2005).

    Article  Google Scholar 

  8. Gursoy M.C., Poor H.V., Verdú S.: Spectral efficiency of peak power limited Rician block-fading channels. In: Proc. IEEE Int. Symposium on Information Theory (ISIT), Chicago, IL (2004).

    Google Scholar 

  9. Huang J., Meyn S.P.: Characterization and computation of optimal distributions for channel coding. IEEE Trans. Information Theory, 51(7), p. 2336–2351 (2005).

    Article  MathSciNet  Google Scholar 

  10. Marzetta T.L., Hochwald B.M.: Capacity of a mobile multipleantenna communication link in Rayleigh flat fading. IEEE Trans. Information Theory 45(1), pp. 139–157 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  11. Zheng L., Tse D.N.C.: Communication on the Grassman manifold: A geometric approach to the noncoherent multiple-antenna channel. IEEE Trans. Information Theory 48(2), pp. 359–383 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  12. Médard M.: The effect upon channel capacity in wireless communications of perfect and imperfect knowledge of channel. IEEE Trans. Information Theory 46(3), pp. 933–946 (2000).

    Article  MATH  Google Scholar 

  13. Lapidoth A., Shamai S. (Shitz): Fading channels: How perfect need ‘perfect side information’ be?. IEEE Trans. Information Theory 48(5), pp. 1118–1134 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  14. Verdú S.: Spectral efficiency in the wideband regime. IEEE Trans. Information Theory 48(6), pp. 1319–1343 (2002).

    Article  MATH  Google Scholar 

  15. Lapidoth A., Moser S.M.: Capacity bounds via duality with applications to multiple-antenna systems on flat-fading channels. IEEE Trans. Information Theory 49(10), pp. 2426–2467 (2003).

    Article  MathSciNet  Google Scholar 

  16. Gursoy M.: On the capacity and energy efficiency of training-based transmissions over fading channels. IEEE Trans. Information Theory 55(10), pp. 4543–4567 (2009).

    Article  MathSciNet  Google Scholar 

  17. Hassibi B., Hochwald B.M.: How much training is needed in multiple-antennawireless links. IEEE Trans. Information Theory 49(4), pp. 951–963 (2003).

    Article  MATH  Google Scholar 

  18. Shannon C.E.: Channels with side information at the transmitter. IBMJ. Res.Dev. 2, pp. 289–293 (1958).

    Article  MathSciNet  Google Scholar 

  19. Biglieri E., Proakis J., Shamai S. (Shitz): Fading channels: Information-theoretic and communications aspects. IEEE Trans. Information Theory 44(6), pp. 2619–2692 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  20. Tse D., Viswanath P.: Fundamentals of Wireless Communication. Cambridge Univ. Press, Cambridge, UK (2005).

    Book  MATH  Google Scholar 

  21. Klang G. et al.: Identification of radio-link technologies. IST-2003-507581WINNER, D2.1 Public Deliverable.

    Google Scholar 

  22. Steele R., Webb W.: Variable rate QAM for data transmission over Rayleigh fading channels. In: Proc. IEEE Wireless, Calgary, Canada, pp. 1–14 (1991).

    Google Scholar 

  23. Morinaga N., Nakagawa M., Kohno R.: New concepts and technologies for achieving highly reliable and high-capacity multimedia wireless communication systems. IEEE Commun. Mag. 35, pp. 34–41 (1997).

    Article  Google Scholar 

  24. Chua S.-G., Goldsmith A.J.: Adaptive coded modulation for fading channels. In: Proc. IEEE Int. Conf. Commun., Montreal, Canada (1997).

    Google Scholar 

  25. Goldsmith A.J., Chua S.-G.: Variable-rate variable-power MQAM for fading channels. IEEE Trans. Commun., 45(10), pp. 1218–1230 (1997).

    Article  Google Scholar 

  26. Chung S.T., Goldsmith A.J.: Degrees of freedomin adaptive modulation: A unified view. IEEE Trans. Commun. 49(9), pp. 1561–1571 (2001).

    Article  MATH  Google Scholar 

  27. Jafar S.A., Vishwanath S., Goldsmith A.J.: Through put maximization with multiple codes and partial outages. In: Proc. Global Telecommun. Conf., San Antonio, TX (2001).

    Google Scholar 

  28. Hanzo L., Wong C.H., Yee M.S.: Adaptive wireless transceivers: Turbo-coded, turboequalised and space-time coded TDMA, CDMA and OFDM systems. Wiley, New York, NY (2002).

    Google Scholar 

  29. Keller T., Hanzo L.: Adaptive modulation techniques for duplex OFDM transmission. IEEE Trans. Veh. Technol. 49(5), pp. 1893–1906 (2000).

    Article  Google Scholar 

  30. Chow P.S, Cioffi J.M., Bingham J.A.C.: A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels. IEEE Trans. Commun. 43(2–4), pp. 773–775 (1995).

    Article  Google Scholar 

  31. Fisher R.F.H., Huber B.: A new loading algorithmfor discrete multitone transmission. In: Proc. Global Telecommun. Conf., London, UK (1996).

    Google Scholar 

  32. Rohling H., Grundheid R.: Performance of an OFDM-TDMA mobile communication system. In: Proc. Global Telecommun. Conf., London, UK (1996).

    Google Scholar 

  33. Münz G., Pfletschinger S., Speidel J.: An efficient waterfilling algorithm for multiple access OFDM. In: Proc. Global Telecommun. Conf., Taipei, Taiwan (2002).

    Google Scholar 

  34. Pfletschinger S., Münz G., Speidel J.: Efficient subcarrier allocation for multiple access in OFDM systems. In: Proc. Int. OFDM Workshop, Hamburg, Germany (2002 ).

    Google Scholar 

  35. Catreux S., Driessen P.F., Greenstein L.J.: Attainable throughput of an interference-limited multiple-input multiple-output (MIMO) cellular system. IEEE Trans. Commun., 49 6(8), pp. 1307–1311 (2001).

    Article  Google Scholar 

  36. Liew T.H., Hanzo L.: Space-time block coded adaptive modulation aided OFDM. In: Proc. Global Telecommun. Conf., San Antonio, TX (2001).

    Google Scholar 

  37. Dlugaszewski Z., Piatyszek A., Wesolowski K.:Adaptivemulti-coded OFDM transmission for selective fading channels. In: Proc. IST Mobile & Wireless Communications Summit, Aveiro, Portugal (2003).

    Google Scholar 

  38. Wesolowski K., Dlugaszewski Z.: Information theory aspects of digital transmission over fading channels. In: Proc. National Symposium of Radio Science, Poznan, Poland (2002).

    Google Scholar 

  39. Hu S., Duel-Hallen A.: Combined adaptive modulation and transmitter diversity using long range prediction for flat fading mobile radio channels. In: Proc. Global Telecommun. Conf., San Antonio, TX (2001).

    Google Scholar 

  40. Holliday T., Goldsmith A., Glynn P.: Wireless link adaptation policies: QoS for deadline constrained traffic with imperfect channel estimates. In: Proc. Int. Commun. Conf., New York, NY (2002).

    Google Scholar 

  41. Falahati S., Svensson A., Sternad M., Mei H.: Adaptive Trellis-coded modulation over predicted flat fading channels. In: Proc. IEEE Veh. Technol. Conf., Orlando, FL (2003).

    Google Scholar 

  42. Falahati S., Svensson A., Ekman T., Sternad M.: Adaptive modulation systems for predicted wireless channels. IEEE Trans. Commun. 52(2), pp. 307–316 (2004).

    Article  Google Scholar 

  43. Koutsopoulos I., Tassiulas L.: Channel state-adaptive techniques for throughput enhancement in wireless broadbandnetworks. In: Proc. Conferenceon Computer Communications, Anchorage, AK (2001).

    Google Scholar 

  44. Lim C.H., Cioffi J.M.: Performance of the adaptive rate MQAM with on/off power control. IEEE Communications Letters 5, pp. 16–18 (2001).

    Article  Google Scholar 

  45. Tang F., Deneire L., Engels M., Moonen M.: Adaptive link adaptation. In: Proc. Global Telecommun. Conf., San Antonio, TX (2001).

    Google Scholar 

  46. Tralli V., Vaccari A., Verdone R., Andrisano O.: Adaptive time and frequency resource assignment with COFDM for LMDS systems. IEEE Trans. Commun. 49(2), pp. 235–238 (2001).

    Article  MATH  Google Scholar 

  47. Ulukus S., Biglieri E., Win M.Z.: Optimum modulation and multicode formats in CDMA systems with multiuser receivers. In: Proc. Conference on Computer Communications, Anchorage, AK (2001).

    Google Scholar 

  48. Caire G., Shamai S.: On the capacity of some channels with channel state information. IEEE Trans. Information Theory 45(9), pp. 2007–2019 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  49. Ephremides A.: Energy concerns in wireless networks. IEEE Wireless Commun. 9(4), pp. 48–59 (2002).

    Article  Google Scholar 

  50. Minto M., Ragazzi D., Agarossi L., Giangaspero L.: Minimum transmission power algorithm for OFDM-based flexible systems. In: Proc. Workshop on Broadband Wireless Ad-Hoc Networks and Services, Sophia-Antipolis, France (2002).

    Google Scholar 

  51. Polydoros A., Rautio J., Razzano G., Bogucka H., Ragazzi D., Dallas P.I., Mammela A., Benedix M., Lobeira M., Agarossi L.:WIND-FLEX: Developing a novel test-bed for exploring flexible radio concepts in an indoor environment. IEEE Commun. Mag. 41(7), pp. 116–122 (2003).

    Article  Google Scholar 

  52. Dlugaszewski Z., Wesolowski K., Bogucka H., Tyczka P., Piatyszek A., Polydoros A., Nikitopoulos K., Dagres Y., Paltenghi G., Giangaspero L., Benedix M., Ertel J: Information theory results derived from WIND-FLEX implementation. 4.6 Public Deliverable of the IST-1999-10025 projectWIND-FLEX (2002).

    Google Scholar 

  53. Wong C.Y., Cheng R.S., Ben Letaief K., Murch R.D.: Multiuser OFDM with adaptive subcarrier, bit, and power allocation. IEEE J. Select. Areas Commun. 17, pp. 1747–1758 (1999).

    Article  Google Scholar 

  54. Johansson M.: Diversity-enhanced equal access — Considerable throughput gains with 1-bit feedback, in Proc. IEEE Workshop on Signal Processing Advances in Wireless Communications, Lisboa, Portugal, July 2004.

    Google Scholar 

  55. Baum K.L., Kostas T.A., Sartori P.J., Clas-son B.K.: Performance characteristics of cellular systems with different link adaptation strategies. IEEE Trans. Veh. Technol. 52(6), pp. 1497–1507 (2003).

    Article  Google Scholar 

  56. Berrou C., Glavieux A., Thitimajshima P.: Near Shannon limit error correcting coding and

    Google Scholar 

  57. Wang X., Poor H.V.: Iterative (turbo) soft interference cancellation and decoding for coded CDMA. IEEE Trans. Commun. 47(7), pp. 1046–1061 (1999).

    Article  Google Scholar 

  58. Wehinger J., Mecklenbräuker C.: Iterative CDMA multiuser receiver with soft decisiondirected channel estimation. IEEE Trans. Signal Process. 54(10), pp. 3922–3934 (2006).

    Article  Google Scholar 

  59. Tuchler M., Koetter R., Singer A.C.: Turbo equalization: Principles and new results. IEEE Trans. Commun. 50(5), pp. 754–767 (2002).

    Article  Google Scholar 

  60. Kschischang F., Frey B., Loeliger H.-A.: Factor graphs and the sum-product algorithms. IEEE Trans. Information Theory 47(2), pp. 498–519 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  61. Attias H.: A variational Bayesian framework for graphical models. Advances in Neural Information Processing Systems, pp. 209–215 (2000).

    Google Scholar 

  62. Beal M.: Variational algorithms for approximate inference. Ph.D. dissertation, University of Cambridge (2003).

    Google Scholar 

  63. Cover T.M., Thomas J.A.: Elements of Information Theory, 2nd ed. Wiley Interscience, New York, NY (2006).

    MATH  Google Scholar 

  64. McEliece R., MacKay D., Cheng J.: Turbo decoding as an instance of Pearl’s belief ‘propagation’ algorithms. IEEE J. Select. Areas Commun. 16(2), pp. 140–152 (1998).

    Article  Google Scholar 

  65. Worthen A.P., Stark W.E.: Unified design of iterative receivers using factor graphs. IEEE Trans. Information Theory 47(2), pp. 843–849 (2001).

    Article  Google Scholar 

  66. Minka T.: Divergence measures and message passing. Microsoft Research Ltd., Tech. Rep. (2005).

    Google Scholar 

  67. Boutros J., Caire G.: Iterative multiuser joint decoding: Unified framework and asymptotic analysis. IEEE Trans. Information Theory 48(7), pp. 1772–1793 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  68. Novak C., Matz G., Hlawatsch F.: A factor graph approach to joint iterative data detection and channel estimation in pilot-assistedidma transmissions. In: Proc. IEEE Int. Conf. Acoust., Speech, Signal Process, Las Vegas, NV (2008).

    Google Scholar 

  69. Stefanatos S., Katsaggelos A.: Joint data detection and channel tracking for OFDM systems with phase noise. IEEE Trans. Signal Process. 56(9), pp. 4230–4243 (2008).

    Article  MathSciNet  Google Scholar 

  70. Hu B., Land I., Rasmussen L., Piton R., Fleury B.: A divergence minimization approach to joint multiuser decoding for coded CDMA. IEEE J. Select. Areas Commun. 26(3), pp. 432–445 (2008).

    Article  Google Scholar 

  71. Gallager R.G.: Low density parity check codes. IRE Trans. Inform. Theory 8, pp. 21–28 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  72. Bahl L., Clocke J., Jelinek F., Raviv J.: Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans. Information Theory 20(3), pp. 284–287 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  73. Robertson P., Villebrun E., Hoeher P.: A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain. In: Proc. IEEE Int. Conf. Commun., Seattle, WA (1995).

    Google Scholar 

  74. Hagenauer J., Hoeher P.: A Viterbi algorithm with soft-decision outputs and its applications. In: Proc. IEEE Global Telecommun. Conf., Dallas, TX (1989).

    Google Scholar 

  75. Wiberg N.: Codes and decoding on general graphs. Ph.D. dissertation, Dept. of Electrical Engineering, Linköping, Sweden, 1996, Linköping Studies in Science and Technology.

    Google Scholar 

  76. Fossorier M.P.C., Mihaljevic M., Imai H.: Reduced complexity iterative decoding of lowdensity parity check codes based on belief propagation. IEEE Trans. Commun. 47(5), pp. 673–680 (1999).

    Article  Google Scholar 

  77. NEWCOM++ WPR.4, DR.4.1: State of the art. Tech. Rep. (2008).

    Google Scholar 

  78. Mitola J.: Cognitive radio: An integrated agent architecture for software defined radio. Ph.D. dissertation, Royal Institute of Technology (KTH), Sweden (2000).

    Google Scholar 

  79. Mitola J.: Cognitive radio architecture: The engineering foundations of radio XML. Wiley & Sons, Hoboken, NJ (2006).

    Book  Google Scholar 

  80. Haykin S.:Cognitive radio: Brain-empoweredwireless communications. IEEEJ. Select. Areas Commun. 23(2), pp. 201–220 (2005).

    Article  Google Scholar 

  81. Hanzo L., Munster M., Choi B.J., Keller T.: OFDM and MC-CDMA for broadband multi-user communications, WLANs and broadcasting. Wiley & Sons, Hoboken, NJ (2003).

    Book  Google Scholar 

  82. Rajbanshi R., Wyglinski A.M., Minden G.J.: OFDM-based cognitive radios for dynamic spectrum access networks. In: Hossain E., Bhargava V.K. (Eds.): Cognitive Wireless Communication Networks. New York, NY: Springer Science and Business Media (2007).

    Google Scholar 

  83. Mahmoud H.A., Yucek T., Arslan H.: OFDM for cognitive radio: Merits and challenges. IEEE Wireless Communications 16(2), pp. 6–14 (2009).

    Article  Google Scholar 

  84. Brandes S., Cosovic I., Schnell M.: Reduction of out-of-band radiation in OFDM systems by insertion of cancellation carriers. IEEE Commun. Letters 10(6), pp. 420–422 (2006).

    Article  Google Scholar 

  85. Kozek W., Molisch A.F.: Nonorthogonal pulseshapes formulticarrier communications in doubly dispersive channels. IEEE J. Select. Areas Commun. 16(8), pp. 1579–1589 (1998).

    Article  Google Scholar 

  86. Hunziker T., Dahlhaus D.: Iterative symbol detection for bandwidth efficient nonorthogonal multicarrier transmission. In: Proc. IEEE Veh. Technol. Conf., Tokyo, Japan (2000).

    Google Scholar 

  87. IST-027960 URANUS, D3.1: GMCR transceiver for air interfaces in single mode operation. Tech. Rep. (2007).

    Google Scholar 

  88. Goldsmith A.: Wireless Communications. Cambdrige, UK: Cambridge Univ. Press (2005).

    Google Scholar 

  89. MacKenzie A.B., DaSilva L.A.: Game Theory for Wireless Engineers. Morgan & Claypool, San Rafael, CA (2006).

    Google Scholar 

  90. Srivastava V., Neel J., MacKenzie A.B., Menon R., DaSilva L. A., Hicks J.E., Reed J.H., Gilles R.P.: Using game theory to analyze wireless ad hoc networks. IEEE Commun. Surveys & Tutorials, 7(4), pp. 46–56 (2005).

    Article  Google Scholar 

  91. Perlaza S.M., Debbah M., Lasaulce S., Bogucka H.: On the benefits of bandwidth limiting in decentralized vector multiple access channels. In: Proc. Int. Conf. Cognitive Radio Oriented Wireless Networks and Communications, Hannover, Germany (2009).

    Google Scholar 

  92. Bogucka H.: Linear and arithmetically-progressivetaxation of spectrum resources in cognitive OFDMA. In: Proc. Int. Workshop on Game Theory in Communication Networks, Pisa, Italy (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Polydoros, A., Bogucka, H., Tyczka, P., Manchon, C.N. (2012). Bandwidth and energy efficient radio access. In: The Newcom++ Vision Book. Springer, Milano. https://doi.org/10.1007/978-88-470-1983-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1983-6_6

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1982-9

  • Online ISBN: 978-88-470-1983-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics