The ultimate limits of wireless networks

  • Carles Antón-Haro
  • Yonina Eldar
  • Laura Galluccio
  • George Iosifidis
  • Marios Kountouris
  • Iordanis Koutsopoulos
  • Javier Matamoros
  • Sergio Palazzo
  • Shlomo Shamai
  • Marc Belleville
  • Venkatesh Ramakrishnan
  • Guido Masera
  • Dominique Morche


This paper discusses the grand challenges associated with the holy grail of understanding and reaching the ultimate performance limits of wireless networks. Specifically, the next goal in the networking community is to realize the Future Internet. In this paper, we take a step further from the state of the art in this field, and, describe the main challenges associated with desirable optimal network operation and control in future wireless networks.


Wireless Network Wireless Sensor Network Medium Access Control Point Process Outage Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Tassiulas L., Ephremides A.: Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Trans. Aut. Contr. 37(12), pp. 1936–1948 (2009).MathSciNetCrossRefGoogle Scholar
  2. 2.
    Tassiulas L., Ephremides A.: Dynamic server allocationto parallel queueswith randomly varying connectivity. IEEE Trans. Information Theory 39(2), pp. 466–478 (1993).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Georgiadis L., Neely M.J., Tassiulas L.: Resource allocationand cross-layer control inwireless networks. Foundations and Trends in Networking 1(1), pp. 1–144 (2006).CrossRefGoogle Scholar
  4. 4.
    van de Ven P.M., Borst S.C., Shneer S.: Instability of MaxWeight scheduling algorithms. In: Proc. Conference on Computer Communications, Rio de Janeiro, Brazil (2009).Google Scholar
  5. 5.
    Lin X., Shroff N.: The impact of imperfect scheduling on cross-layer rate control in multihop wireless networks. In: Proc. Conference on Computer Communications, Miami, FL (2005).Google Scholar
  6. 6.
    Neely M.J., Modiano E., Li C.: Fairness and optimal stochastic control for heterogeneous networks. In: Proc. Conference on Computer Communications, Miami, FL (2005).Google Scholar
  7. 7.
    Chaporkar P., Kar K., Sarkar S.: Throughput guarantees throughmaximal scheduling in wireless networks. In: Proc. Allerton Conf. Control, Commun., Comput., pp. 1557–1567,Monticello, IL (2005).Google Scholar
  8. 8.
    McKeown N., Mekkittikul A., Anantharam V., Walrand J.: Achieving 100% throughput in an input-queued switch. IEEE Trans. Commun., 47(8), pp. 1260–1267 (1999).CrossRefGoogle Scholar
  9. 9.
    Andrews M., Zhang L.: Achieving stability in networks of input-queued switches. In: Proc. Conference on Computer Communications, Anchorage, AK, (2001).Google Scholar
  10. 10.
    Chiang M.: Balancing transport and physical layers in wireless multihop networks: Jointly optimal congestion control and power control. IEEE J. Sel. Areas Commun. 23(1), pp. 104–116 (2005).CrossRefGoogle Scholar
  11. 11.
    Bertsekas D., Tsitsiklis J.N.: Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, Upper Saddle River, NJ (1989).MATHGoogle Scholar
  12. 12.
    Fudenberg D., Tirole J.: Game Theory. MIT Press, Boston, MA (1991).Google Scholar
  13. 13.
    Papadimitriou C.: Game theory, algorithms, and the Internet. In: Proc. ACM-SIAM Symposium on Discrete Algorithms, Washington, DC (2001).Google Scholar
  14. 14.
    Theodorakopoulos G., Baras J.S.: A game for ad hoc network connectivity in the presence of malicious users. In: Proc. Global Telecommun. Conf., San Francisco, CA (2006).Google Scholar
  15. 15.
    Mathur S., Sankaranarayanan L., Mandayam N.B.: Coalitional games in Gaussian interference channels. In: Proc. IEEE Int. Symposium on Information Theory (ISIT), Seattle, WA (2006).Google Scholar
  16. 16.
    Dayan P., Daw N.D.: Decision theory, reinforcement learning, and the brain. Cognitive, Affective & BehavioralNeuroscience, pp. 429–453 (2008).Google Scholar
  17. 17.
    Awerbuch B., Kleinberg R.: Competitive collaborativelearning. Journal of Computer and System Sciences 74, pp. 1271–1288 (2008).MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Fudenberg D., Levine D.: The Theory of Learning in Games. MIT Press, Boston, MA (1998).MATHGoogle Scholar
  19. 19.
    Xi Y., Yeh E.M.: Pricing, competition, and routing for selfish and strategic nodes in multi-hop relay networks. In: Proc. Conference on Computer Communications, Phoenix, AZ (2008).Google Scholar
  20. 20.
    Cao X.R., Shen H., Milito R., Wirth P.: Internet pricing with a game theoretical approach: Concepts and examples. IEEE/ACM Trans. Networking 10, pp. 208–216 (2002).CrossRefGoogle Scholar
  21. 21.
    Nisan N., Roughgarden T., Tardos E., Vazirani V.V.: Algorithmic Game Theory. Cambridge Univ. Press, Cambdrige,UK (2007).MATHCrossRefGoogle Scholar
  22. 22.
    Iosifidis G., Koutsopoulos I.: Double auction mechanisms for resource allocation in autonomous networks. IEEE J. Sel. Areas Commun. 28(1), pp. 95–102 (2010).CrossRefGoogle Scholar
  23. 23.
    Katti S., Rahul H., Hu W., Katabi D., Medard M., Crowcroft J.: XORs in the air: Practical wireless network coding. IEEE/ACM Trans. Networking 16(3), pp. 497–510 (2008).CrossRefGoogle Scholar
  24. 24.
    Ahlswede R., Cai N., Li S.R., Yeung R.W.: Network information flow. IEEE Trans. Information Theory 46(4), pp. 1204–1216 (2000).MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Liu J., Goeckel D., Towsley D.: Bounds of the gain of network coding and broad casting in wireless networks. In: Proc. Conference on Computer Communications, Anchorage, AK (2001).Google Scholar
  26. 26.
    Gkantsidis C., Rodriguez P.: Network coding for large scale content distribution. In: Proc. Conference on Computer Communications, Miami, FL (2005).Google Scholar
  27. 27.
    Jaggi S., Sanders P., Chou P.A., Effros M., Egner S., Jain K., Tolhuizen L.: Polynomial time algorithms for multicast network code construction. IEEE Trans. Information Theory 51(6), pp. 1973–1982 (2005).MathSciNetCrossRefGoogle Scholar
  28. 28.
    Yan X., Yeung R.W., Zhang Z.: The capacity region for multi-source multi-sink network coding. In: Proc. IEEE International Symposiumon Information Theory, Nice, France, (2007).Google Scholar
  29. 29.
    Stoyan D., Kendall W., Mecke J.: Stochastic Geometry and Its Applications, 2nd ed. Wiley and Sons, New York, NY (1996).Google Scholar
  30. 30.
    Penrose M.: Random Geometric Graphs, Oxford Studies in Probability. Oxford University Press, Oxford, UK (2003).CrossRefGoogle Scholar
  31. 31.
    Kingman J.: Poisson Processes. Oxford University Press, Oxford, UK (1993).MATHGoogle Scholar
  32. 32.
    Daley D., Jones D.V.: An introduction to the theory of point processes. Springer, New York, NY (1988).MATHGoogle Scholar
  33. 33.
    Kleinrock L., Silvester J.A.: Optimum transmission radii in packet radio networks or why six is a magic number. In: Proc. National Telecommunications Conference (1978).Google Scholar
  34. 34.
    Musa S., Wasylkiwskyj W.: Co-channel interference of spread spectrum systems in a multiple user environment. IEEE Trans. Communications 26(10), pp. 1405–1413 (1978).MATHCrossRefGoogle Scholar
  35. 35.
    Baccelli F., Klein M., Lebourges M., Zuyev S.: Stochastic geometry and architecture of communication networks. J. Telecommunication Systems 7(1), pp. 209–227 (1997).CrossRefGoogle Scholar
  36. 36.
    Baccelli F., Zuyev S.: Poisson-Voronoi spanning treeswith applications to the optimization of communication networks. Operations Research 47(4), pp. 619–631 (1999).MATHCrossRefGoogle Scholar
  37. 37.
    Weber S., Yang X., Andrews J., de Veciana G.: Transmission capacity of wireless ad hoc networks with outage constraints. IEEE Trans Information Theory 51(12), pp. 4091–4102(2005).CrossRefGoogle Scholar
  38. 38.
    Baccelli F., Blaszczyszyn B.: Stochastic geometry and wireless networks. Foundations and Trends in Networking (2009).Google Scholar
  39. 39.
    Haenggi M., Andrews J.G., Baccelli F., Dousse O., Franceschetti M.: Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE J. Sel. Areas Commun. 27(7), pp. 1029–1046 (2009).CrossRefGoogle Scholar
  40. 40.
    Win M., Pinto P., Shepp L.:Amathematical theory of network interferenceand its applications. Proc. IEEE 97(2), pp. 205–230 (2009).CrossRefGoogle Scholar
  41. 41.
    Weber S., Andrews J.G., Jindal N.: A tutorial on transmission capacity. Submitted to IEEE Trans. Commun. (2009). [Online]. Available: Scholar
  42. 42.
    Ganti R.K., Haenggi M.: Interference and outage in clusteredwireless ad hoc networks. IEEE Trans. Information Theory 55, pp. 4067–4086 (2009).MathSciNetCrossRefGoogle Scholar
  43. 43.
    Berger T., Zhen Z., Viswanathan H.: The CEO problem: Multiterminal source coding. IEEE Trans. Information Theory 42(3), pp. 887–902 (1996).MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Prabhakaran V., Tse D., Ramchandran K.: Rate region of the quadratic Gaussian CEO problem. In: Proc. IEEE Int. Symposium on Information Theory (ISIT), Chicago, IL (2004).Google Scholar
  45. 45.
    Cover T.M., Thomas J.A.: Elements of Information Theory. Wiley Series in Telecommunications, New York, NY (1993).Google Scholar
  46. 46.
    Gastpar M., Vetterli M.: Source-channel communication in sensor networks. Lecture Notes in Computer Science, pp. 162–177 (2003).Google Scholar
  47. 47.
    Xiao J.-J., Luo Z.-Q.: Multiterminal source-channel communication over an orthogonal multiple-access channel. IEEE Trans. Information Theory 53(9), pp. 3255–3264 (2007).MathSciNetCrossRefGoogle Scholar
  48. 48.
    Draper S.C., Wornell G.: Side information aware coding strategies for sensor networks. IEEE J. Sel. Areas Communications 22(6), pp. 1–11 (2004).CrossRefGoogle Scholar
  49. 49.
    Wyner D., Ziv J.: The rate-distortion function for source coding with side information at the decoder. IEEE Trans. Information Theory 22(1), pp. 1–10 (1976).MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Cui S., Xiao J., Goldsmith A., Luo Z.-Q., Poor H.V.: Estimation diversity and energy efficiency in distributed sensing. IEEE Trans. Signal Process. 55(9), pp. 4683–4695 (2007).MathSciNetCrossRefGoogle Scholar
  51. 51.
    Matamoros J., Antón-Haro C.:Opportunisticpower allocationschemes forwireless sensor networks. In: Proc. IEEE Symposium on Signal Processing and Information Technology, Cairo, Egypt (2007).Google Scholar
  52. 52.
    Levy N., Zeitouni O., Shamai S. (Shitz): Central limit theorem and large deviations of the fading Wyner cellularmodel via product of randommatrices theory. Problems of Information Transmission 45(1), pp. 5–22 (2009).MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Simeone O., Somekh O., Poor H.V., Shamai S. (Shitz): Local base station cooperation via finite-capacity links for the uplink of wireless networks. IEEE Trans. Information Theory 55(1), pp. 190–204 (2009).MathSciNetCrossRefGoogle Scholar
  54. 54.
    Levy N., Zeitouni O., Shamai S. (Shitz): Information theoretic aspects of users’ activity in a Wyner-like cellular model. IEEE Trans. Information Theory 56(5), pp. 2241–2248 (2010).MathSciNetCrossRefGoogle Scholar
  55. 55.
    Somekh O., Simeone O., Poor H.V., Shamai S. (Shitz): Cellular systems with full-duplex amplify-and-forwardrelaying and cooperativebase stations. In: Proc. IEEE Int. Symp. Inform. Theory, Nice, France (2007).Google Scholar
  56. 56.
    Simeone O., Somekh O., Kramer G., Poor H.V., Shamai S. (Shitz): Uplink sum-rate analysis of a multicell system with feedback. In: Proc. Allerton Conference on Communication, Control, and Computing, Monticello, IL (2008).Google Scholar
  57. 57.
    Shakkottai S., Srikant R.: Network Optimization and Control. Foundations and Trends in Networking 2(3) (2007).Google Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Carles Antón-Haro
    • 1
  • Yonina Eldar
    • 2
  • Laura Galluccio
    • 3
  • George Iosifidis
    • 4
    • 5
  • Marios Kountouris
    • 6
  • Iordanis Koutsopoulos
    • 4
    • 5
  • Javier Matamoros
    • 1
  • Sergio Palazzo
    • 3
  • Shlomo Shamai
    • 2
  • Marc Belleville
    • 7
  • Venkatesh Ramakrishnan
    • 8
  • Guido Masera
    • 3
  • Dominique Morche
    • 7
  1. 1.CTTC, Technology Center ofTelecommunications of CatalognaBarcelonaSpain
  2. 2.Technion, Israel Institute of TechnologyTel AvivIsrael
  3. 3.CNIT, Consorzio Nazionale Interuniversitario per le TelecomunicazioniCataniaItaly
  4. 4.IASA, Institute of Accelerating Systems and ApplicationsAthensGreece
  5. 5.University of ThessalyVolosGreece
  6. 6.CNRSNational Center of Scientific ResearchFrance
  7. 7.CEA-LETI, Commisariat à l’Énergie Atomique-Laboratoire d’électronique des technologies de l’informationGrenobleFrance
  8. 8.RWTHAachenGermany

Personalised recommendations