Skip to main content

The ultimate limits of wireless networks

  • Chapter
  • 368 Accesses

Abstract

This paper discusses the grand challenges associated with the holy grail of understanding and reaching the ultimate performance limits of wireless networks. Specifically, the next goal in the networking community is to realize the Future Internet. In this paper, we take a step further from the state of the art in this field, and, describe the main challenges associated with desirable optimal network operation and control in future wireless networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tassiulas L., Ephremides A.: Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Trans. Aut. Contr. 37(12), pp. 1936–1948 (2009).

    Article  MathSciNet  Google Scholar 

  2. Tassiulas L., Ephremides A.: Dynamic server allocationto parallel queueswith randomly varying connectivity. IEEE Trans. Information Theory 39(2), pp. 466–478 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  3. Georgiadis L., Neely M.J., Tassiulas L.: Resource allocationand cross-layer control inwireless networks. Foundations and Trends in Networking 1(1), pp. 1–144 (2006).

    Article  Google Scholar 

  4. van de Ven P.M., Borst S.C., Shneer S.: Instability of MaxWeight scheduling algorithms. In: Proc. Conference on Computer Communications, Rio de Janeiro, Brazil (2009).

    Google Scholar 

  5. Lin X., Shroff N.: The impact of imperfect scheduling on cross-layer rate control in multihop wireless networks. In: Proc. Conference on Computer Communications, Miami, FL (2005).

    Google Scholar 

  6. Neely M.J., Modiano E., Li C.: Fairness and optimal stochastic control for heterogeneous networks. In: Proc. Conference on Computer Communications, Miami, FL (2005).

    Google Scholar 

  7. Chaporkar P., Kar K., Sarkar S.: Throughput guarantees throughmaximal scheduling in wireless networks. In: Proc. Allerton Conf. Control, Commun., Comput., pp. 1557–1567,Monticello, IL (2005).

    Google Scholar 

  8. McKeown N., Mekkittikul A., Anantharam V., Walrand J.: Achieving 100% throughput in an input-queued switch. IEEE Trans. Commun., 47(8), pp. 1260–1267 (1999).

    Article  Google Scholar 

  9. Andrews M., Zhang L.: Achieving stability in networks of input-queued switches. In: Proc. Conference on Computer Communications, Anchorage, AK, (2001).

    Google Scholar 

  10. Chiang M.: Balancing transport and physical layers in wireless multihop networks: Jointly optimal congestion control and power control. IEEE J. Sel. Areas Commun. 23(1), pp. 104–116 (2005).

    Article  Google Scholar 

  11. Bertsekas D., Tsitsiklis J.N.: Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, Upper Saddle River, NJ (1989).

    MATH  Google Scholar 

  12. Fudenberg D., Tirole J.: Game Theory. MIT Press, Boston, MA (1991).

    Google Scholar 

  13. Papadimitriou C.: Game theory, algorithms, and the Internet. In: Proc. ACM-SIAM Symposium on Discrete Algorithms, Washington, DC (2001).

    Google Scholar 

  14. Theodorakopoulos G., Baras J.S.: A game for ad hoc network connectivity in the presence of malicious users. In: Proc. Global Telecommun. Conf., San Francisco, CA (2006).

    Google Scholar 

  15. Mathur S., Sankaranarayanan L., Mandayam N.B.: Coalitional games in Gaussian interference channels. In: Proc. IEEE Int. Symposium on Information Theory (ISIT), Seattle, WA (2006).

    Google Scholar 

  16. Dayan P., Daw N.D.: Decision theory, reinforcement learning, and the brain. Cognitive, Affective & BehavioralNeuroscience, pp. 429–453 (2008).

    Google Scholar 

  17. Awerbuch B., Kleinberg R.: Competitive collaborativelearning. Journal of Computer and System Sciences 74, pp. 1271–1288 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  18. Fudenberg D., Levine D.: The Theory of Learning in Games. MIT Press, Boston, MA (1998).

    MATH  Google Scholar 

  19. Xi Y., Yeh E.M.: Pricing, competition, and routing for selfish and strategic nodes in multi-hop relay networks. In: Proc. Conference on Computer Communications, Phoenix, AZ (2008).

    Google Scholar 

  20. Cao X.R., Shen H., Milito R., Wirth P.: Internet pricing with a game theoretical approach: Concepts and examples. IEEE/ACM Trans. Networking 10, pp. 208–216 (2002).

    Article  Google Scholar 

  21. Nisan N., Roughgarden T., Tardos E., Vazirani V.V.: Algorithmic Game Theory. Cambridge Univ. Press, Cambdrige,UK (2007).

    Book  MATH  Google Scholar 

  22. Iosifidis G., Koutsopoulos I.: Double auction mechanisms for resource allocation in autonomous networks. IEEE J. Sel. Areas Commun. 28(1), pp. 95–102 (2010).

    Article  Google Scholar 

  23. Katti S., Rahul H., Hu W., Katabi D., Medard M., Crowcroft J.: XORs in the air: Practical wireless network coding. IEEE/ACM Trans. Networking 16(3), pp. 497–510 (2008).

    Article  Google Scholar 

  24. Ahlswede R., Cai N., Li S.R., Yeung R.W.: Network information flow. IEEE Trans. Information Theory 46(4), pp. 1204–1216 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu J., Goeckel D., Towsley D.: Bounds of the gain of network coding and broad casting in wireless networks. In: Proc. Conference on Computer Communications, Anchorage, AK (2001).

    Google Scholar 

  26. Gkantsidis C., Rodriguez P.: Network coding for large scale content distribution. In: Proc. Conference on Computer Communications, Miami, FL (2005).

    Google Scholar 

  27. Jaggi S., Sanders P., Chou P.A., Effros M., Egner S., Jain K., Tolhuizen L.: Polynomial time algorithms for multicast network code construction. IEEE Trans. Information Theory 51(6), pp. 1973–1982 (2005).

    Article  MathSciNet  Google Scholar 

  28. Yan X., Yeung R.W., Zhang Z.: The capacity region for multi-source multi-sink network coding. In: Proc. IEEE International Symposiumon Information Theory, Nice, France, (2007).

    Google Scholar 

  29. Stoyan D., Kendall W., Mecke J.: Stochastic Geometry and Its Applications, 2nd ed. Wiley and Sons, New York, NY (1996).

    Google Scholar 

  30. Penrose M.: Random Geometric Graphs, Oxford Studies in Probability. Oxford University Press, Oxford, UK (2003).

    Book  Google Scholar 

  31. Kingman J.: Poisson Processes. Oxford University Press, Oxford, UK (1993).

    MATH  Google Scholar 

  32. Daley D., Jones D.V.: An introduction to the theory of point processes. Springer, New York, NY (1988).

    MATH  Google Scholar 

  33. Kleinrock L., Silvester J.A.: Optimum transmission radii in packet radio networks or why six is a magic number. In: Proc. National Telecommunications Conference (1978).

    Google Scholar 

  34. Musa S., Wasylkiwskyj W.: Co-channel interference of spread spectrum systems in a multiple user environment. IEEE Trans. Communications 26(10), pp. 1405–1413 (1978).

    Article  MATH  Google Scholar 

  35. Baccelli F., Klein M., Lebourges M., Zuyev S.: Stochastic geometry and architecture of communication networks. J. Telecommunication Systems 7(1), pp. 209–227 (1997).

    Article  Google Scholar 

  36. Baccelli F., Zuyev S.: Poisson-Voronoi spanning treeswith applications to the optimization of communication networks. Operations Research 47(4), pp. 619–631 (1999).

    Article  MATH  Google Scholar 

  37. Weber S., Yang X., Andrews J., de Veciana G.: Transmission capacity of wireless ad hoc networks with outage constraints. IEEE Trans Information Theory 51(12), pp. 4091–4102(2005).

    Article  Google Scholar 

  38. Baccelli F., Blaszczyszyn B.: Stochastic geometry and wireless networks. Foundations and Trends in Networking (2009).

    Google Scholar 

  39. Haenggi M., Andrews J.G., Baccelli F., Dousse O., Franceschetti M.: Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE J. Sel. Areas Commun. 27(7), pp. 1029–1046 (2009).

    Article  Google Scholar 

  40. Win M., Pinto P., Shepp L.:Amathematical theory of network interferenceand its applications. Proc. IEEE 97(2), pp. 205–230 (2009).

    Article  Google Scholar 

  41. Weber S., Andrews J.G., Jindal N.: A tutorial on transmission capacity. Submitted to IEEE Trans. Commun. (2009). [Online]. Available: http://arxiv.org/abs/0809.0016

    Google Scholar 

  42. Ganti R.K., Haenggi M.: Interference and outage in clusteredwireless ad hoc networks. IEEE Trans. Information Theory 55, pp. 4067–4086 (2009).

    Article  MathSciNet  Google Scholar 

  43. Berger T., Zhen Z., Viswanathan H.: The CEO problem: Multiterminal source coding. IEEE Trans. Information Theory 42(3), pp. 887–902 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  44. Prabhakaran V., Tse D., Ramchandran K.: Rate region of the quadratic Gaussian CEO problem. In: Proc. IEEE Int. Symposium on Information Theory (ISIT), Chicago, IL (2004).

    Google Scholar 

  45. Cover T.M., Thomas J.A.: Elements of Information Theory. Wiley Series in Telecommunications, New York, NY (1993).

    Google Scholar 

  46. Gastpar M., Vetterli M.: Source-channel communication in sensor networks. Lecture Notes in Computer Science, pp. 162–177 (2003).

    Google Scholar 

  47. Xiao J.-J., Luo Z.-Q.: Multiterminal source-channel communication over an orthogonal multiple-access channel. IEEE Trans. Information Theory 53(9), pp. 3255–3264 (2007).

    Article  MathSciNet  Google Scholar 

  48. Draper S.C., Wornell G.: Side information aware coding strategies for sensor networks. IEEE J. Sel. Areas Communications 22(6), pp. 1–11 (2004).

    Article  Google Scholar 

  49. Wyner D., Ziv J.: The rate-distortion function for source coding with side information at the decoder. IEEE Trans. Information Theory 22(1), pp. 1–10 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  50. Cui S., Xiao J., Goldsmith A., Luo Z.-Q., Poor H.V.: Estimation diversity and energy efficiency in distributed sensing. IEEE Trans. Signal Process. 55(9), pp. 4683–4695 (2007).

    Article  MathSciNet  Google Scholar 

  51. Matamoros J., Antón-Haro C.:Opportunisticpower allocationschemes forwireless sensor networks. In: Proc. IEEE Symposium on Signal Processing and Information Technology, Cairo, Egypt (2007).

    Google Scholar 

  52. Levy N., Zeitouni O., Shamai S. (Shitz): Central limit theorem and large deviations of the fading Wyner cellularmodel via product of randommatrices theory. Problems of Information Transmission 45(1), pp. 5–22 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  53. Simeone O., Somekh O., Poor H.V., Shamai S. (Shitz): Local base station cooperation via finite-capacity links for the uplink of wireless networks. IEEE Trans. Information Theory 55(1), pp. 190–204 (2009).

    Article  MathSciNet  Google Scholar 

  54. Levy N., Zeitouni O., Shamai S. (Shitz): Information theoretic aspects of users’ activity in a Wyner-like cellular model. IEEE Trans. Information Theory 56(5), pp. 2241–2248 (2010).

    Article  MathSciNet  Google Scholar 

  55. Somekh O., Simeone O., Poor H.V., Shamai S. (Shitz): Cellular systems with full-duplex amplify-and-forwardrelaying and cooperativebase stations. In: Proc. IEEE Int. Symp. Inform. Theory, Nice, France (2007).

    Google Scholar 

  56. Simeone O., Somekh O., Kramer G., Poor H.V., Shamai S. (Shitz): Uplink sum-rate analysis of a multicell system with feedback. In: Proc. Allerton Conference on Communication, Control, and Computing, Monticello, IL (2008).

    Google Scholar 

  57. Shakkottai S., Srikant R.: Network Optimization and Control. Foundations and Trends in Networking 2(3) (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Antón-Haro, C. et al. (2012). The ultimate limits of wireless networks. In: The Newcom++ Vision Book. Springer, Milano. https://doi.org/10.1007/978-88-470-1983-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1983-6_5

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1982-9

  • Online ISBN: 978-88-470-1983-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics