Cognitive and cooperative wireless networks

  • Sergio Palazzo
  • Davide Dardari
  • Mischa Dohler
  • Sinan Gezici
  • Lorenza Giupponi
  • Marco Luise
  • Jordi Pérez Romero
  • Shlomo Shamai
  • Dominique Noguet
  • Christophe Moy
  • Gerd Asheid


The traditional approach of dealing with spectrum management in wireless communications has been the definition of a licensed user granted with exclusive exploitation rights for a specific frequency. While it is relatively easy in this case to ensure that excessive interference does not occur, this approach is unlikely to achieve the objective to maximize the value of spectrum, and in fact recent spectrum measurements carried out worldwide have revealed a significant spectrum underutilization, in spite of the fact that spectrum scarcity is claimed when trying to find bands where new systems can be allocated. Just to mention some examples of measurements, different studies can be found in [1–6], revealing that overall occupation in some studies for frequencies up to 7GHz could be in the order of only 18%.


Cognitive Radio Power Allocation Primary User Secondary User Cognitive Radio Network 


  1. 1.
    Sanders F.H.: Broadband spectrum surveys in Denver, CO, San Diego, CA, and Los Angeles, CA: Methodology, analysis, and comparative results. In: Proc. IEEE Int. Symp. Electromagnetic Compatibility, Rome, Italy (1998).Google Scholar
  2. 2.
    McHenry M.A., Tenhula P.A., McCloskey D., Roberson D.A., Hood C.S.: Chicago spectrum occupancy measurements & analysis and a long-term studies proposal. In: Int. W. Technology and Policy for Accessing Spectrum, Boston, MA (2006).Google Scholar
  3. 3.
    Petrin A., Steffes P.G.: Analysis and comparison of spectrum measurements performed in urban and rural areas to determine the total amount of spectrum usage. In: Proc. Int. Symp. Advanced Radio Technologies, Boulder, CO (2005).Google Scholar
  4. 4.
    Chiang R.I.C., Rowe G.B., Sowerby K.W.: A quantitative analysis of spectral occupancy measurements for cognitive radio. In: Proc. IEEE Veh. Technol. Conf., Dublin, Ireland (2007).Google Scholar
  5. 5.
    Wellens M., Wu J., Mähönen P.: Evaluationof spectrum occupancy in indoor and outdoor scenario in the context of cognitive radio. In: Proc. Int. Conf. Cognitive Radio Oriented Wireless Networks and Communications, Orlando, FL (2007).Google Scholar
  6. 6.
    López-Benítez M., Casadevall F., Umbert A., Pérez-Romero J., Hachemani R., Palicot J., Moy C.: Spectral occupation measurements and blind standard recognition sensor for cognitive radio networks. In: Proc. Int. Conf. Cognitive Radio Oriented Wireless Networks and Communications, Hannover, Germany (2009).Google Scholar
  7. 7.
    Federal Communications Commission (FCC), Notice of Proposed Rule Making, ET Docket no. 04-113 (2004).Google Scholar
  8. 8.
    Mitola J. III, Maguire G.Q.: Cognitive radio: Making software radios more personal. IEEE Pers. Commun. 6(4), pp. 13–18 (1999).CrossRefGoogle Scholar
  9. 9.
    Akyildiz I.F., Lee W.-Y., Vuran M.C., Mohanty S.: Next generation/dynamic spectrum access/ cognitive radio wireless networks: A survey. Comput. Networks 50(13), pp. 2127–2159 (2006).MATHCrossRefGoogle Scholar
  10. 10.
    Bourse D., et al.: The E2R II Flexible Spectrum Management (FSM) — Framework and Cognitive Pilot Channel (CPC) Concept — Technical and BusinessAnalysis and Recommendations. E2R II White Paper (2007).Google Scholar
  11. 11.
    Alberty T.: Frequency domain interpretation of the Cramér-Rao bound for carrier and clock synchronization. IEEE Pers. Commun. 43(2-3-4), pp. 1185–1191 (1995).MATHGoogle Scholar
  12. 12.
    Celebi H., Arslan H.: Cognitive positioning systems. IEEE Trans. Wireless Commun. 6(12), pp. 4475–4483 (2007).CrossRefGoogle Scholar
  13. 13.
    Cramér H.: Mathematical methods of statistics. Princeton Univ. Press, Princeton, NJ (1946).MATHGoogle Scholar
  14. 14.
    D’Andrea A.N., Mengali U., Reggiannini R.: The modified Cramér-Rao bound and its application to synchronization problems. IEEE Pers. Commun. 42(2-4), pp. 1391–1399 (1994).Google Scholar
  15. 15.
    Kay S.M.: Fundamentals of statistical signal processing: Estimation theory. Prentice-Hall, Englewood Cliffs, NJ (1993).MATHGoogle Scholar
  16. 16.
    Mallinckrodt A., Sollenberger T.: Optimum pulse-time determination. IRE Transactions PGIT-3, pp. 151–159 (1954).Google Scholar
  17. 17.
    Mengali U., D’Andrea A.N.: Synchronization Techniques for Digital Receivers. Plenum Press, New York, NY (1997).Google Scholar
  18. 18.
    Skolnik M.: Introduction to radar systems. McGraw-Hill, New York, NY (1980).Google Scholar
  19. 19.
    Van Trees H.L.: Detection, Estimation and Modulation Theory. Wiley, New York, NY (1968).MATHGoogle Scholar
  20. 20.
    Lottici V., Luise M., Saccomando C., Spalla F.: Non-data aided timing recovery for filter-bank multicarrier wireless communications. IEEE Trans. Commun. 54(11), pp. 4365–4375 (2006).Google Scholar
  21. 21.
    Luise M., Zanier F.: Multicarrier signals: A natural enabler for cognitive positioning systems. In: Proc. Int. Workshop on Multi-Carrier Systems & Solutions (MC-SS), Herrsching, Germany (2009).Google Scholar
  22. 22.
    ( definitions)Cognition — What is cognition? [Online]. Available: cognition.htmGoogle Scholar
  23. 23.
    Private communication with Apostolos Kontouris, Orange Labs, France (2007).Google Scholar
  24. 24.
    Sycara K.P.: Multiagent systems. AI Magazine 19(2), pp. 79–92 (1998).Google Scholar
  25. 25.
    Galindo-Serrano A., Giupponi L.: Aggregated interference control for cognitive radio networks based on multi-agent learning. In: Proc. Int. Conf. Cognitive Radio Oriented Wireless Networks and Communications, Hannover, Germany (2009).Google Scholar
  26. 26.
    Bellman R.: Dynamic Programming. Princeton Univ. Press, Princeton, NJ (1957).MATHGoogle Scholar
  27. 27.
    Harmon M.E., Harmon S.S.: Reinforcement learning: A tutorial (2000).Google Scholar
  28. 28.
    Watkins J., Dayan P.: Technical note: Q-learning. Machine Learning 8, pp. 279–292 (1992).MATHGoogle Scholar
  29. 29.
    Hoen P., Tuyls K.: Analyzing multi-agent reinforcement learning using evolutionary dynamics. In: Proc. European Conference on Machine Learning (ECML), Pisa, Italy (2004).Google Scholar
  30. 30.
    Tan M.: Multi-agent reinforcement learning: Independent vs. cooperative learning. In: Huhns, M.N., Singh M.P. (Eds.): Reading in Agents. Morgan Kauffman, San Francisco, CA, pp. 487–494 (1993).Google Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Sergio Palazzo
    • 1
  • Davide Dardari
    • 1
  • Mischa Dohler
    • 2
  • Sinan Gezici
    • 3
  • Lorenza Giupponi
    • 2
  • Marco Luise
    • 1
  • Jordi Pérez Romero
    • 4
  • Shlomo Shamai
    • 5
  • Dominique Noguet
    • 6
  • Christophe Moy
    • 7
    • 8
  • Gerd Asheid
    • 9
  1. 1.CNIT, Consorzio Nazionale Interuniversitario per le TelecomunicazioniCataniaItaly
  2. 2.CTTC, Technology Center of Telecommunications of CatalognaBarcelonaSpain
  3. 3.Bilkent UniversityAnkaraTurkey
  4. 4.UPCPolytechnic University of CatalognaBarcelonaSpain
  5. 5.Technion, Israel Institute of TechnologyTel AvivIsrael
  6. 6.CEA-LETI, Commisariat à l’ÉnergieAtomique- Laboratoire d’électronique des technologies de l’informationGrenobleFrance
  7. 7.CNRS/SupelecNational Center of Scientific ResearchFrance
  8. 8.Higher School of ElectricityFrance
  9. 9.RWTHAachenGermany

Personalised recommendations