The Admissibility Theorem for the Spatial X-Ray Transform over the Two-Element Field

Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 16)


We consider the Radon transform along lines in an n-dimensional vector space over the two-element field. It is well known that this transform is injective and highly overdetermined. We classify the minimal collections of lines for which the restricted Radon transform is also injective. This is an instance of I.M. Gelfand’s admissibility problem. The solution is in stark contrast to the more uniform cases of the affine hyperplane transform and the projective line transform, which are addressed in other papers (Feldman and Grinberg in Admissible Complexes for the Projective X-Ray Transform over a Finite Field, preprint, 2012; Grinberg in J. Comb. Theory, Ser. A 53:316–320, 1990). The presentation here is intended to be widely accessible, requiring minimum background.


Line Complex Integral Geometry Finite Projective Space Continuous Category Chow Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author thanks the referee for helpful comments and suggestions.


  1. 1.
    Berenstein, C.A.: Review of The universality of the Radon transform by Leon Ehrenpreis. Math. Reviews, MR2019604 (2007) Google Scholar
  2. 2.
    Bolker, E.D.: The Finite Radon Transform. Integral Geometry (Brunswick, Maine, 1984). Contemp. Math., vol. 63, pp. 27–50. Am. Math. Soc., Providence (1987) Google Scholar
  3. 3.
    Bolker, E.D., Grinberg, E.L., Kung, J.P.: Admissible complexes for the combinatorial Radon transform. A progress report. In: Integral Geometry and Tomography, Arcata, CA, 1989. Contemp. Math., vol. 113, pp. 1–3. Am. Math. Soc., Providence (1990) CrossRefGoogle Scholar
  4. 4.
    Chern, S.S.: Integral geometry in Klein spaces. Ann. Math. 43(2), 403–422 (1942) Google Scholar
  5. 5.
    Ehrenpreis, L.: The Universality of the Radon Transform, with Appendix by P. Kuchment and E.T. Quinto. Oxford Mathematical Monographs. Clarendon/Oxford University Press, New York (2003) Google Scholar
  6. 6.
    Feldman, D.V., Grinberg, E.L.: Admissible Complexes for the Projective X-Ray Transform over a Finite Field, preprint (2012) Google Scholar
  7. 7.
    Gelfand, I.M., Graev, M.I.: Integral transformations connected with straight line complexes in complex affine space. Dokl. Akad. Nauk SSSR 2, 809–812 (1961) MathSciNetGoogle Scholar
  8. 8.
    Gelfand, I.M., Graev, M.I., Vilenkin, N.: Generalized Functions, vol. 5. Academic Press, New York (1966) Google Scholar
  9. 9.
    Grinberg, E.L.: The admissibility theorem for the hyperplane transform over a finite field. J. Comb. Theory, Ser. A 53, 316–320 (1990) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Grinberg, E.L., Quinto, E.T. (eds.): Integral geometry and tomography. In: Proc. AMS-IMS-SIAM Joint Summer Research Conf., Humboldt State U., Arcata, CA, 1989. Contemp. Math., vol. 113. American Mathematical Society, Providence (1990) Google Scholar
  11. 11.
    Guillemin, V., Sternberg, S.: Geometric Asymptotics, Chap. VI and Appendix. Mathematical Surveys, No. 14. American Mathematical Society, Providence (1977) Google Scholar
  12. 12.
    Kirillov, A.A.: On a problem of I.M. Gelfand. Dokl. Akad. Nauk SSSR 137, 276–277 (2000) (Russian); translated as Sov. Math. Dokl. 2, 268–269 (1961) Google Scholar
  13. 13.
    Kung, J.P.: The Radon transforms of a combinatorial geometry I. J. Comb. Theory, Ser. A 26(2), 97–102 (1979) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Sternberg, S.: Group Theory and Physics. Cambridge University Press, Cambridge (1994). Appendix C MATHGoogle Scholar
  15. 15.
    Strichartz, R.S.: Radon inversion—variations on a theme. Am. Math. Mon. 89(6), 377–384 (1982) 420–423 MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Zelevinskii, A.V.: Generalized Radon transforms in spaces of functions on Grassmann manifolds over a finite field (Russian). Usp. Mat. Nauk 28(5173), 243–244 (1973) MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of Massachusetts BostonBostonUSA

Personalised recommendations