On Local Injectivity for Generalized Radon Transforms

  • Jan Boman
Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 16)


We consider a class of weighted plane generalized Radon transforms Rf(γ)=∫f(x,u(ξ,η,x))m(ξ,η,x) dx, where the curve γ=γ (ξ,η) is defined by y=u(ξ,η,x), and m(ξ,η,x) is a given positive weight function. We prove local injectivity for this transform across a given curve γ 0 near a given point (x 0,y 0) on γ 0 for classes of curves and weight functions that are invariant under arbitrary smooth coordinate transformations in the plane.


Weight Function Local Injectivity Radon Transform Local Diffeomorphisms Curve Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arnold, V.I.: Geometric Methods in the Theory of Ordinary Differential Equations, 2nd edn. Springer, Berlin (1988) CrossRefGoogle Scholar
  2. 2.
    Boman, J.: An example of non-uniqueness for a generalized Radon transform. J. Anal. Math. 61, 395–401 (1993) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Boman, J.: A local uniqueness theorem for weighted Radon transforms. Inverse Probl. Imaging 4, 631–637 (2010) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Boman, J.: Local non-injectivity for weighted Radon transforms. Contemp. Math. 559, 39–47 (2011) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Boman, J., Quinto, E.T.: Support theorems for real-analytic Radon transforms. Duke Math. J. 55, 943–948 (1987) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bryant, R., Griffiths, P., Hsu, L.: Toward a geometry of differential equations. In: Geometry, Topology, & Physics, Conf. Proc. Lecture Notes Geom. Topology, vol. IV. Int. Press, Cambridge (1995) Google Scholar
  7. 7.
    Ehrenpreis, L.: The Universality of the Radon Transform. Clarendon Press, Oxford (2003) MATHCrossRefGoogle Scholar
  8. 8.
    Gelfand, I.M., Graev, M.I.: Admissible n-dimensional complexes of curves in R n. Funct. Anal. Appl. 14, 274–281 (1980) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gelfand, I.M., Graev, M.I., Shapiro, Z.Ya.: Differential forms and integral geometry. Funct. Anal. Appl. 3, 101–114 (1969) CrossRefGoogle Scholar
  10. 10.
    Gelfand, I.M., Gindikin, S.G., Shapiro, Z.Ya.: A local problem of integral geometry in a space of curves. Funct. Anal. Appl. 13, 87–102 (1979) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gindikin, S.G.: Reduction of manifolds of rational curves and related problems of the theory of differential equations. Funct. Anal. Appl. 18, 278–298 (1984) MATHCrossRefGoogle Scholar
  12. 12.
    Gindikin, S.G.: A remark on the weighted Radon transform on the plane. Inverse Probl. Imaging 4, 649–653 (2010) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Gindikin, S.G.: Remarks on infinitesimally Desarguian families of curves. Funct. Anal. Appl. 45, 265–270 (2011) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Helgason, S.: A duality in integral geometry on symmetric spaces. In: Proc. U.S.–Japan Seminar on Differential Geometry, Kyoto 1965, pp. 37–56. Nippon Hyoronsha, Tokyo (1966) Google Scholar
  15. 15.
    Strichartz, R.S.: Radon inversion—variations on a theme. Am. Math. Mon. 89, 377–384 (1982), see also 420–423 MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  1. 1.Stockholm UniversityStockholmSweden

Personalised recommendations