Coleff–Herrera Currents Revisited

  • Alekos Vidras
  • Alain Yger
Part of the Springer Proceedings in Mathematics book series (PROM, volume 16)


In the present paper, we describe the recent approach to residue currents by Andersson, Björk, and Samuelsson (Andersson in Ann. Fac. Sci. Toulouse Math. Sér. 18(4):651–661, 2009; Björk in The Legacy of Niels Henrik Abel, pp. 605–651, Springer, Berlin, 2004; Björk and Samuelsson in J. Reine Angew. Math. 649:33–54, 2010), focusing primarily on the methods inspired by analytic continuation (that were initiated in a quite primitive form in Berenstein et al. in Residue Currents and Bézout Identities. Progress in Mathematics, vol. 114, Birkhäuser, Basel, 1993). Coleff–Herrera currents (with or without poles) play indeed a crucial role in Lelong–Poincaré-type factorization formulas for integration currents on reduced closed analytic sets. As revealed by local structure theorems (which can also be understood as global when working on a complete algebraic manifold due to the GAGA principle), such objects are of algebraic nature (antiholomorphic coordinates playing basically the role of “inert” constants). Thinking about division or duality problems instead of intersection ones (especially in the “improper” setting, which is certainly the most interesting), it happens then to be necessary to revisit from this point of view the multiplicative inductive procedure initiated by Coleff and Herrera (Lecture Notes in Mathematics, vol. 633, Springer, Berlin, 1978), this being the main objective of this presentation. In homage to the pioneering work of Leon Ehrenpreis, to whom we are both deeply indebted, and as a tribute to him, we also suggest a currential approach to the so-called Nœtherian operators that remain the key stone in various formulations of Leon’s Fundamental Principle.


Analytic Continuation Global Section Holomorphic Section Cartier Divisor Integration Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aizenberg, L.A., Yuzhakov, A.P.: Integral Representation and Residues in Multidimensional Complex Analysis. Am. Math. Soc., Providence (1983) Google Scholar
  2. 2.
    Andersson, M.: Uniqueness and factorization of Coleff–Herrera currents. Ann. Fac. Sci. Toulouse Math. Sér. 18(4), 651–661 (2009) MATHCrossRefGoogle Scholar
  3. 3.
    Andersson, M.: Coleff–Herrera currents, duality, and Noetherian operators. Preprint Gothenburg (2009). arXiv:0902.3064
  4. 4.
    Andersson, M., Wulcan, E.: Decomposition of residue currents. J. Reine Angew. Math. 638, 103–118 (2010) MathSciNetMATHGoogle Scholar
  5. 5.
    Andersson, M., Wulcan, E.: Residue currents with prescribed annihilator ideals. Ann. Sci. Ec. Norm. Super. 40(6), 985–1007 (2007) MathSciNetMATHGoogle Scholar
  6. 6.
    Bernstein, I.N.: The analytic continuation of generalized functions with respect to a parameter. Funct. Anal. Appl. 6, 273–285 (1972) CrossRefGoogle Scholar
  7. 7.
    Aleksandrov, A., Tsikh, A.: Théorie des résidus de Leray et formes de Barlet sur une intersection compléte singuliére. C. R. Acad. Sci. Paris, Sér. I 333, 1–6 (2001) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Berenstein, C.A., Gay, R., Vidras, A., Yger, A.: Residue Currents and Bézout Identities. Progress in Mathematics, vol. 114. Birkhäuser, Basel (1993) MATHCrossRefGoogle Scholar
  9. 9.
    Berenstein, C.A., Vidras, A., Yger, A.: Multidimensional residue theory and applications, manuscript in preparation Google Scholar
  10. 10.
    Björk, J.E.: Rings of Differential Operators. North-Holland, Amsterdam (1979) MATHGoogle Scholar
  11. 11.
    Björk, J.E.: Residue calculus and \(\mathcal{D}\)-modules on complex manifolds. Preprint, Stockholm University (1996) Google Scholar
  12. 12.
    Björk, J.E.: Residues and \(\mathcal{D}\)-modules. In: Laudal, O.A., Piene, R. (eds.) The Legacy of Niels Henrik Abel, pp. 605–651. Springer, Berlin (2004) CrossRefGoogle Scholar
  13. 13.
    Björk, J.E., Samuelsson, H.: Regularizations of residue currents. J. Reine Angew. Math. 649, 33–54 (2010) MathSciNetMATHGoogle Scholar
  14. 14.
    Coleff, N., Herrera, M.: Les courants résiduels associés à une forme méromorphe. Lecture Notes in Math., vol. 633. Springer, Berlin (1978) MATHGoogle Scholar
  15. 15.
    Dolbeault, P.: On the structure of residual currents. Several complex variables (Stockholm, 1987/1988). Math. Notes 38, 258–273 Google Scholar
  16. 16.
    Ehrenpreis, L.: Fourier Analysis in Several Complex Variables. Wiley-Interscience, New York (1970) MATHGoogle Scholar
  17. 17.
    El Mir, H.: Sur le prolongement des courants positifs fermés. Acta Math. 153, 1–45 (1984) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Grauert, H., Remmert, R.: Coherent Analytic Sheaves. Grunlehren der math. Wissenschaften, vol. 265. Springer, Berlin (1984) MATHCrossRefGoogle Scholar
  19. 19.
    Gyoja, A.: Bernstein–Sato’s polynomial for several analytic functions. J. Math. Kyoto Univ. 33(2), 399–411 (1993) MathSciNetMATHGoogle Scholar
  20. 20.
    Kashiwara, M.: B-functions and holonomic systems. Invent. Math. 38(1), 33–53 (1976/77) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lärkäng, R., Samuelsson, H.: Various approaches to products of residue currents. Preprint Gothenburg (2009). arXiv:1005.2056
  22. 22.
    Leray, J.: Le calcul différentiel et intégral sur une variété analytique complexe, Problème de Cauchy III. Bull. Soc. Math. Fr. 87, 81–180 (1959) MathSciNetMATHGoogle Scholar
  23. 23.
    Massey, D.B.: Numerical control over complex analytic singularities. Mem. Am. Math. Soc. 163, 778 (2003) MathSciNetGoogle Scholar
  24. 24.
    Palamodov, V.P.: Linear Operators with Constant Coefficients. Springer, New York (1970) MATHCrossRefGoogle Scholar
  25. 25.
    Poly, J.B.: Sur un théorème de J Leray en théorie des résidus. C. R. Acad. Sci. Paris Ser. A–B 274, A171–A174 (1972) MathSciNetGoogle Scholar
  26. 26.
    Sabbah, C.: Proximité évanescente II, Equations fonctionelles pour plusieurs fonctions analytiques. Compos. Math. 64(2), 213–241 (1987) MathSciNetMATHGoogle Scholar
  27. 27.
    Samuelsson, H.: Analytic continuation of residue currents. Ark. Mat. 47(1), 127–141 (2009) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of CyprusNicosiaCyprus
  2. 2.Institut de MathématiquesUniversité de BordeauxTalenceFrance

Personalised recommendations