Complex Gradient Systems

Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 16)


Let \(\widetilde{M}\) be a complex manifold of complex dimension n+k. We say that the functions u 1,…,u k and the vector fields ξ 1,…,ξ k on \(\widetilde{M}\) form a complex gradient system if ξ 1,…,ξ k , 1,…, k are linearly independent at each point \(p\in \widetilde{M}\) and generate an integrable distribution of \(T \widetilde{M}\) of dimension 2k and du α (ξ β )=0, d c u α (ξ β )=δ αβ for α,β=1,…,k. We prove a Cauchy theorem for such complex gradient systems with initial data along a CR-submanifold of type (n,k). We also give a complete local characterization for the complex gradient systems which are holomorphic and abelian, which means that the vector fields \(\xi _{\alpha }^{c}=\xi _{\alpha }-iJ \xi _{\alpha }\), α=1,…,k, are holomorphic and satisfy \([\xi _{\alpha }^{c},\bar{\xi _{\beta }^{c}} ]=0\) for each α,β=1,…,k.


Vector Field Complex Manifold Real Hypersurface Symplectic Action Left Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    da Silva, A.C.: Lectures on Symplectic Geometry. Lecture Notes in Mathematics, vol. 1764. Springer, Berlin (2001) MATHCrossRefGoogle Scholar
  2. 2.
    Dragomir, S., Tomassini, G.: Differentiable Geometry and Analysis on CR Manifolds. Birkhauser, Basel (2006) Google Scholar
  3. 3.
    Duchamp, T., Kalka, M.: Singular Monge–Ampère foliations. Math. Ann. 325, 187–209 (2003) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Heinzner, P., Schuetzdeller, P.: Convexity properties of gradient maps. Adv. Math. 225(3), 1119–1133 (2010) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Heinzner, P., Schwarz, G.: The Cartan decomposition of the moment map. Math. Ann. 337, 197–232 (2007) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    McDuff, D., Salomon, D.: Introduction to Symplectic Topology. Oxford Mathematical Monographs. Oxford University Press, London (1995) MATHGoogle Scholar
  7. 7.
    Tomassini, G., Venturini, S.: Contact geometry of one dimensional holomorphic foliations. Indiana J. Math. (2009, to appear). arXiv:0907.5082v1
  8. 8.
    Tomassini, G., Venturini, S.: Adapted complex tubes on the symplectization of pseudo-Hermitian manifolds. (2010). arXiv:1002.4558
  9. 9.
    Tomassini, G., Venturini, S.: Adapted complex tubes on the symplectization of pseudo-Hermitian manifolds. Arkive Math. 96, 77–83 (2011) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  1. 1.Scuola Normale SuperiorePisaItaly
  2. 2.Dipartimento Di MatematicaUniversità di BolognaBolognaItaly

Personalised recommendations