Advertisement

Geometric Path Integrals. A Language for Multiscale Biology and Systems Robustness

  • Domenico Napoletani
  • Emanuel Petricoin
  • Daniele C. Struppa
Part of the Springer Proceedings in Mathematics book series (PROM, volume 16)

Abstract

In this paper we suggest that, under suitable conditions, supervised learning can provide the basis to formulate at the microscopic level quantitative questions on the phenotype structure of multicellular organisms. The problem of explaining the robustness of the phenotype structure is rephrased as a real geometrical problem on a fixed domain. We further suggest a generalization of path integrals that reduces the problem of deciding whether a given molecular network can generate specific phenotypes to a numerical property of a robustness function with complex output, for which we give heuristic justification. Finally, we use our formalism to interpret a pointedly quantitative developmental biology problem on the allowed number of pairs of legs in centipedes.

Keywords

Path Integral Meaningful Condition Radon Transform Path Integral Formalism Phase Interference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

We would like to thank Mirco Mannucci, Roman Buniy, and the referee for very useful comments.

References

  1. 1.
    Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, New York (2010) Google Scholar
  2. 2.
    Altland, A., Simons, B.D.: Condensed Matter Field Theory. Cambridge University Press, Cambridge (2010) MATHCrossRefGoogle Scholar
  3. 3.
    Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Springer, New York (2003) MATHGoogle Scholar
  4. 4.
    Berenstein, C.A.: Review of “The universality of the Radon transform” by L. Ehrenpreis, MR2019604 (2007d:58047) Google Scholar
  5. 5.
    Bochnak, J., Coste, M., Roy, M.F.: Real Algebraic Geometry. Springer, New York (1998) MATHGoogle Scholar
  6. 6.
    Calvert, V., Tang, Y., Boveia, V., Wulfkuhle, J., Schutz-Geschwender, A., Olive, M., Liotta, L., Petricoin, E.: Development of multiplexed protein profiling and detection using near infrared detection of reverse-phase protein microarrays. Clin. Proteomics 1, 81–90 (2004) CrossRefGoogle Scholar
  7. 7.
    Ehrenpreis, L.: Fourier Analysis in Several Complex Variables. Wiley-Interscience, New York (1970) MATHGoogle Scholar
  8. 8.
    Ehrenpreis, L.: The Universality of the Radon Transform. Oxford University Press, Oxford (2003) MATHCrossRefGoogle Scholar
  9. 9.
    Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965) MATHGoogle Scholar
  10. 10.
    Gunawardena, J.: Models in systems biology: The parameter problem and the meanings of robustness. In: Lodhi, H., Muggleton, S. (eds.) Elements of Computational Systems Biology. Wiley, New York (2009) Google Scholar
  11. 11.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, 2nd edn. Springer, New York (2008) Google Scholar
  12. 12.
    Houle, D., Govindaraju, D.R., Omholt, S.: Phenomics: The next challenge. Nat. Rev. Genet. 11, 855–866 (2010) CrossRefGoogle Scholar
  13. 13.
    Irish, J.M., Kotecha, N., Nolan, G.P.: Mapping normal and cancer cell signalling networks: towards single-cell proteomics. Nat. Rev., Cancer 6, 146–155 (2006) CrossRefGoogle Scholar
  14. 14.
    Izenman, A.J.: Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning. Springer, New York (2008) MATHGoogle Scholar
  15. 15.
    Kumano-go, N., Fujiwara, D.: Feynman path integrals and semiclassical approximation. RIMS Kokyuroku Bessatsu B5, 241–263 (2008) MathSciNetMATHGoogle Scholar
  16. 16.
    Kashiwara, M., Kawai, T., Kimura, T.: Foundations of Algebraic Analysis. Princeton Mathematical Series, vol. 37. Princeton University Press, Princeton (1986) MATHGoogle Scholar
  17. 17.
    Kitano, H.: Towards a theory of biological robustness. Mol. Syst. Biol. 3, 137 (2007) CrossRefGoogle Scholar
  18. 18.
    Kleinert, H.: Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 4th edn. World Scientific, Singapore (2004) MATHGoogle Scholar
  19. 19.
    Minelli, A.: The Development of Animal Form. Cambridge University Press, Cambridge (2003) CrossRefGoogle Scholar
  20. 20.
    Schulman, L.S.: Techniques and Applications of Path Integration. Dover, New York (2005) MATHGoogle Scholar
  21. 21.
    Voit, E.O.: Computational Analysis of Biochemical Systems. Cambridge University Press, Cambridge (2000) Google Scholar
  22. 22.
    Wray, G.A.: Evolutionary dissociations between homologous genes and homologous structures. In: Bock, G.R., Cardew, G. (eds.) Homology, pp. 189–206. Wiley, Chichester (1999) Google Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Domenico Napoletani
    • 1
    • 2
  • Emanuel Petricoin
    • 1
  • Daniele C. Struppa
    • 2
  1. 1.Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasUSA
  2. 2.Schmid College of Science and TechnologyChapman UniversityOrangeUSA

Personalised recommendations