On Fermat-Type Functional and Partial Differential Equations

Part of the Springer Proceedings in Mathematics book series (PROM, volume 16)


This paper concerns entire and meromorphic solutions to functional and nonlinear partial differential equations of the form a 1 f m +a 2 g n =a 3 with function coefficients a k , k=1,2,3, where f and g are unknown functions or partial derivatives of an unknown function. We will discuss some recent results and also give, among other things, some new results on these equations.


Partial Differential Equation Partial Derivative Meromorphic Function Nonlinear Partial Differential Equation Entire Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baker, I.N.: On a class of meromorphic functions,. Proc. Am. Math. Soc. 17, 819–822 (1966) MATHCrossRefGoogle Scholar
  2. 2.
    Chuang, C.: Sur la comparaison de la croissance d’une fonction méromorphe et de celle de sa dérivée. Bull. Sci. Math. 75, 171–190 (1951) MathSciNetGoogle Scholar
  3. 3.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics. Partial Differential Equations, vol. II. Interscience, New York (1962) MATHGoogle Scholar
  4. 4.
    Gundersen, G., Hayman, W.: The strength of Cartan’s version of Nevanlinna theory. Bull. Lond. Math. Soc. 36, 433–454 (2004) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Gross, F.: On the equation f n+g n=1. Bull. Am. Math. Soc. 72, 86–88 (1966) (erratum, 72, 576 (1966)) MATHCrossRefGoogle Scholar
  6. 6.
    Granville, A., Tucker, T.J.: It’s as easy as abc. Not. Am. Math. Soc. 49, 1224–1231 (2002) MathSciNetMATHGoogle Scholar
  7. 7.
    Han, Q.: On complex analytic solutions of the partial differential equation \(u_{z_{1}}^{m}+u_{z_{2}}^{m}=u^{m}\). Houst. J. Math. 35, 277–289 (2009) MATHGoogle Scholar
  8. 8.
    Hemmati, J.: Entire solutions of first-order nonlinear partial differential equations. Proc. Am. Math. Soc. 125, 1483–1485 (1977) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Huber, A.: A novel class of solutions for a nonlinear third order wave equation generated by the Weierstrass transformation. Chaos Solitons Fractals 28, 972–978 (2006) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Hurwitz, A., Courant, R.: Funktionentheorie, vol. 4. Springer, Berlin (1964) MATHGoogle Scholar
  11. 11.
    Khavinson, D.: A note on entire solutions of the eikonal equation. Am. Math. Mon. 102, 159–161 (1995) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Kujala, R.: Functions of finite λ-type in several complex variables. Trans. Am. Math. Soc. 161, 327–358 (1971) MathSciNetMATHGoogle Scholar
  13. 13.
    Jategaonkar, A.V.: Elementary proof of a theorem of P. Motel on entire functions. J. Lond. Math. Soc. 40, 166–170 (1965) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Lang, S.: Old and new conjectured diophantine inequalities. Bull. Am. Math. Soc. 23, 37–75 (1990) MATHCrossRefGoogle Scholar
  15. 15.
    Li, B.Q.: On certain functional and partial differential equations. Forum Math. 17, 77–86 (2005) MathSciNetMATHGoogle Scholar
  16. 16.
    Li, B.Q.: Entire solutions of certain partial differential equations and factorization of partial derivatives. Trans. Am. Math. Soc. 357, 3169–3177 (2005) MATHCrossRefGoogle Scholar
  17. 17.
    Li, B.Q.: On meromorphic solutions of f 2+g 2=1. Math. Z. 258, 763–771 (2008) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Li, B.Q.: Uniqueness of entire functions sharing four small functions. Am. J. Math. 119, 841–858 (1997) MATHCrossRefGoogle Scholar
  19. 19.
    Montel, P.: Leçons sur les familles normales de functions analytiques et leurs applications. Gauthier-Villars, Paris (1927) Google Scholar
  20. 20.
    Saleeby, E.G.: Entire and meromorphic solutions of Fermat type partial differential equations. Analysis 19, 369–376 (1999) MathSciNetMATHGoogle Scholar
  21. 21.
    Shabat, B.V.: Introduction to Complex Analysis, part II, Functions of Several Variables. Translation Mathematical Monographs, vol. 110. American Mathematical Society, Providence (1992) MATHGoogle Scholar
  22. 22.
    Shabat, B.V.: Distribution of Values of Holomorphic Mappings. Translation Mathematical Monographs, vol. 61. American Mathematical Society, Providence (1985) MATHGoogle Scholar
  23. 23.
    Stoll, W.: Introduction to the Value Distribution Theory of Meromorphic Functions. Springer, New York (1982) Google Scholar
  24. 24.
    Toda, N.: On the functional equation \(\sum_{i=0}^{p}a_{i}f_{i}^{n_{i}}=1\). Tohoku Math. J. 23, 289–299 (1971) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Taylor, R., Wiles, A.: Ring-theoretic properties of certain Hecke algebra. Ann. Math. 141, 553–572 (1995) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. Math. 141, 443–551 (1995) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Yang, C.C.: A generalization of a theorem of P. Montel on entire functions. Proc. Am. Math. Soc. 26, 332–334 (1970) MATHCrossRefGoogle Scholar
  28. 28.
    Yang, L.: Value Distribution Theory. Springer, Berlin (1993) MATHGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  1. 1.Department of MathematicsFlorida International UniversityMiamiUSA

Personalised recommendations