On Fermat-Type Functional and Partial Differential Equations

  • Bao Qin Li
Part of the Springer Proceedings in Mathematics book series (PROM, volume 16)


This paper concerns entire and meromorphic solutions to functional and nonlinear partial differential equations of the form a 1 f m +a 2 g n =a 3 with function coefficients a k , k=1,2,3, where f and g are unknown functions or partial derivatives of an unknown function. We will discuss some recent results and also give, among other things, some new results on these equations.


Partial Differential Equation Partial Derivative Meromorphic Function Nonlinear Partial Differential Equation Entire Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baker, I.N.: On a class of meromorphic functions,. Proc. Am. Math. Soc. 17, 819–822 (1966) MATHCrossRefGoogle Scholar
  2. 2.
    Chuang, C.: Sur la comparaison de la croissance d’une fonction méromorphe et de celle de sa dérivée. Bull. Sci. Math. 75, 171–190 (1951) MathSciNetGoogle Scholar
  3. 3.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics. Partial Differential Equations, vol. II. Interscience, New York (1962) MATHGoogle Scholar
  4. 4.
    Gundersen, G., Hayman, W.: The strength of Cartan’s version of Nevanlinna theory. Bull. Lond. Math. Soc. 36, 433–454 (2004) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Gross, F.: On the equation f n+g n=1. Bull. Am. Math. Soc. 72, 86–88 (1966) (erratum, 72, 576 (1966)) MATHCrossRefGoogle Scholar
  6. 6.
    Granville, A., Tucker, T.J.: It’s as easy as abc. Not. Am. Math. Soc. 49, 1224–1231 (2002) MathSciNetMATHGoogle Scholar
  7. 7.
    Han, Q.: On complex analytic solutions of the partial differential equation \(u_{z_{1}}^{m}+u_{z_{2}}^{m}=u^{m}\). Houst. J. Math. 35, 277–289 (2009) MATHGoogle Scholar
  8. 8.
    Hemmati, J.: Entire solutions of first-order nonlinear partial differential equations. Proc. Am. Math. Soc. 125, 1483–1485 (1977) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Huber, A.: A novel class of solutions for a nonlinear third order wave equation generated by the Weierstrass transformation. Chaos Solitons Fractals 28, 972–978 (2006) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Hurwitz, A., Courant, R.: Funktionentheorie, vol. 4. Springer, Berlin (1964) MATHGoogle Scholar
  11. 11.
    Khavinson, D.: A note on entire solutions of the eikonal equation. Am. Math. Mon. 102, 159–161 (1995) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Kujala, R.: Functions of finite λ-type in several complex variables. Trans. Am. Math. Soc. 161, 327–358 (1971) MathSciNetMATHGoogle Scholar
  13. 13.
    Jategaonkar, A.V.: Elementary proof of a theorem of P. Motel on entire functions. J. Lond. Math. Soc. 40, 166–170 (1965) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.