Mathematics of Hybrid Imaging: A Brief Review

  • Peter Kuchment
Part of the Springer Proceedings in Mathematics book series (PROM, volume 16)


The article provides a brief survey of the mathematics of newly being developed so-called “hybrid” (also called “multi-physics” or “multi-wave”) imaging techniques.


Sound Speed Electrical Impedance Tomography Observation Surface Microlocal Analysis Forward Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was partially supported by the NSF DMS Grant 0604778, as well as by MSRI and IAMCS. The author expresses his gratitude to these institutions. Thanks also go to many colleagues with whom the author discussed the hybrid imaging methods (the author’s attempt to write specific names produced a very long, while still incomplete, list).


  1. 1.
    Agranovsky, M., Finch, D., Kuchment, P.: Range conditions for a spherical mean transform. Inverse Probl. Imaging 3, 373–382 (2009) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Agranovsky, M., Kuchment, P.: Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed. Inverse Probl. 23, 2089–2102 (2007) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Agranovsky, M., Kuchment, P., Kunyansky, L.: On reconstruction formulas and algorithms for the TAT and PAT tomography. In: Wang, L.V. (ed.) Photoacoustic Imaging and Spectroscopy, pp. 89–101. CRC Press, Boca Raton (2009) CrossRefGoogle Scholar
  4. 4.
    Agranovsky, M., Kuchment, P., Quinto, E.T.: Range descriptions for the spherical mean Radon transform. J. Funct. Anal. 248, 344–386 (2007) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Agranovsky, M., Nguyen, L.: Range conditions for a spherical mean transform and global extension of solutions of Darboux equation. J. Anal. Math. 112(1), 351–367 (2011). doi: 10.1007/s11854-010-0033-0 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Agranovsky, M., Quinto, E.T.: Injectivity sets for the Radon transform over circles and complete systems of radial functions. J. Funct. Anal. 139, 383–414 (1996) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Aguilar, V., Ehrenpreis, L., Kuchment, P.: Range conditions for the exponential Radon transform. J. Anal. Math. 68, 1–13 (1996) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Allmaras, M., Bangerth, W.: Reconstructions in ultrasound modulated optical tomography. Preprint arXiv:0910.2748v3
  9. 9.
    Ambartsoumian, G., Kuchment, P.: A range description for the planar circular Radon transform. SIAM J. Math. Anal. 38, 681–692 (2006) MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ammari, H.: An Introduction to Mathematics of Emerging Biomedical Imaging. Springer, Berlin (2008) MATHGoogle Scholar
  11. 11.
    Ammari, H., Bonnetier, E., Capdeboscq, Y., Tanter, M., Fink, M.: Electrical impedance tomography by elastic deformation. SIAM J. Appl. Math. 68, 1557–1573 (2008) MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Ammari, H., Bossy, E., Jugnon, V., Kang, H.: Mathematical modeling in photoacoustic imaging of small absorbers. SIAM Rev. 52, 677–695 (2010) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Anastasio, M., Zhang, J., Pan, X., Zou, Y., Ku, G., Wang, L.V.: Half-time image reconstruction in thermoacoustic tomography. IEEE Trans. Med. Imaging 24, 199–210 (2005) CrossRefGoogle Scholar
  14. 14.
    Andreev, V., Popov, D., et al.: Image reconstruction in 3D optoacoustic tomography system with hemispherical transducer array. Proc. SPIE 4618, 137–145 (2002) CrossRefGoogle Scholar
  15. 15.
    Astala, K., Päivärinta, L.: Calderón’s inverse conductivity problem in the plane. Ann. Math. 163, 265–299 (2006) MATHCrossRefGoogle Scholar
  16. 16.
    Bal, G.: Hybrid inverse problems and internal information. In: G. Uhlmann, (ed.), Inside out: Inverse Problems and Applications. MSRI Publ., vol. 2 (to appear) Google Scholar
  17. 17.
    Bal, G.: Cauchy problem for Ultrasound Modulated EIT, preprint, April 2011 Google Scholar
  18. 18.
    Bal, G., Bonnetier, E., Monard, F., Triki, F.: Inverse diffusion from knowledge of power densities, preprint, March 2011 Google Scholar
  19. 19.
    Bal, G., Finch, D., Kuchment, P., Stefanov, P., Uhlmann, G. (eds.): Tomography and Inverse Transport Theory. Contemp. Math., vol. 559. AMS, Providence (2011) MATHGoogle Scholar
  20. 20.
    Bal, G., Jollivet, A.: Combined source and attenuation reconstructions in SPECT. In: G. Bal, D. Finch, P. Kuchment, P. Stefanov, G. Uhlmann (eds.) Tomography and Inverse Transport Theory. Contemp. Math., vol. 559, pp. 13–28. AMS, Providence (2011) CrossRefGoogle Scholar
  21. 21.
    Bal, G., Jollivet, A., Jugnon, V.: Inverse transport theory of photoacoustics. Inverse Probl. 26(2), 025011 (2010) MathSciNetCrossRefGoogle Scholar
  22. 22.
    Bal, G., Ren, K.: Multiple-source quantitative photoacoustic tomography (submitted) Google Scholar
  23. 23.
    Bal, G., Ren, K.: Non-uniqueness result for a hybrid inverse problem. In: G. Bal, D. Finch, P. Kuchment, P. Stefanov, G. Uhlmann (eds.) Tomography and Inverse Transport Theory. Contemp. Math., vol. 559, pp. 29–38. AMS, Providence (2011) CrossRefGoogle Scholar
  24. 24.
    Bal, G., Ren, K., Uhlmann, G., Zhou, T.: Quantitative thermo-acoustics and related problems. Inverse Probl. 27, 055007. doi: 10.1088/0266-5611/27/5/055007
  25. 25.
    Bal, G., Schotland, J.C.: Inverse scattering and acousto-optic imaging. Phys. Rev. Lett. 104, 043902 (2010) CrossRefGoogle Scholar
  26. 26.
    Bal, G., Uhlmann, G.: Inverse diffusion theory of photoacoustics. Inverse Probl. 26(8), 085010 (2010) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Barber, D.C., Brown, B.H.: Applied potential tomography. J. Phys. E., Sci. Instrum. 17, 723–733 (1984) CrossRefGoogle Scholar
  28. 28.
    Bell, A.G.: On the production and reproduction of sound by light. Am. J. Sci. 20, 305–324 (1880) Google Scholar
  29. 29.
    Beylkin, G.: The inversion problem and applications of the generalized Radon transform. Commun. Pure Appl. Math. 37, 579–599 (1984) MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Bonnetier, E., Triki, F.: A stability result for electric impedance tomography by elastic perturbation. Presentation at the workshop “Inverse Problems: Theory and Applications”, 12 November 2010. MSRI, Berkeley, CA Google Scholar
  31. 31.
    Borcea, L.: Electrical impedance tomography. Inverse Probl. 18, R99–R136 (2002) MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Bowen, T.: Radiation-induced thermoacoustic soft tissue imaging. Proc., IEEE Ultrason. Symp. 2, 817–822 (1981) Google Scholar
  33. 33.
    Budinger, T.F., Gullberg, G.T., Huseman, R.H.: Emission computed tomography. In: Herman, G. (ed.) Image Reconstruction from Projections. Topics in Applied Physics, vol. 32, pp. 147–246. Springer, Berlin (1979) CrossRefGoogle Scholar
  34. 34.
    Bukhgeim, A.L.: Inverse gravimetry approach to attenuated tomography. In: G. Bal, D. Finch, P. Kuchment, P. Stefanov, G. Uhlmann (eds.) Tomography and Inverse Transport Theory. Contemp. Math., vol. 559, pp. 49–64. AMS, Providence (2011) CrossRefGoogle Scholar
  35. 35.
    Burq, N.: Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel. Acta Math. 180(1), 1–29 (1998) MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Cakoni, F., Gintides, D., Haddar, H.: The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42(1), 237–255 (2010) MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Calderón, A.: Selected Papers of Alberto P. Calderón. With commentary. Edited by A. Bellow, C.E. Kenig, P. Malliavin, American Mathematical Society, Providence (2008) Google Scholar
  38. 38.
    Capdeboscq, Y., Fehrenbach, J., de Gournay, F., Kavian, O.: Imaging by modification: numerical reconstruction of local conductivities from corresponding power density measurements. SIAM J. Imaging Sci. 2/4, 1003–1030 (2009) CrossRefGoogle Scholar
  39. 39.
    Capdeboscq, Y., Vogelius, M.: A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction. Math. Model. Numer. Anal. 37(1), 159–173 (2003) MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Cheney, M.: A mathematical tutorial on synthetic aperture radar. SIAM Rev. 43(2), 301–312 (2001) MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Cheney, M., Isaacson, D., Newell, J.C.: Electrical impedance tomography. SIAM Rev. 41(1), 85–101 (1999) MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Cipra, B.: Shocking images from RPI. SIAM News, July 1994, 14–15 Google Scholar
  43. 43.
    Colton, D.: Inverse acoustic and electromagnetic scattering theory. In: Uhlmann, G. (ed.) Inside out: Inverse Problems and Applications. MSRI Publ., pp. 67–110. Cambridge University Press, Cambridge (2003) Google Scholar
  44. 44.
    Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Applied Mathematical Sciences, vol. 93, 2nd edn. Springer, Berlin (1998) MATHGoogle Scholar
  45. 45.
    Colton, D., Päivärinta, L., Sylvester, J.: The interior transmission problem. Inverse Probl. Imaging 1, 13–28 (2007) MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics. Partial Differential Equations, vol. II. Interscience, New York (1962) MATHGoogle Scholar
  47. 47.
    Cox, B.T., Arridge, S.R., Beard, P.C.: Estimating chromophore distributions from multiwavelength photoacoustic images. J. Opt. Soc. Am. A 26, 443–455 (2009) CrossRefGoogle Scholar
  48. 48.
    Cox, B., Tarvainen, T., Arridge, S.: Multiple illumination quantitative photoacoustic tomography using transport and diffusion models. In: G. Bal, D. Finch, P. Kuchment, P. Stefanov, G. Uhlmann (eds.) Tomography and Inverse Transport Theory. Contemp. Math., vol. 559, pp. 1–12. AMS, Providence (2011) CrossRefGoogle Scholar
  49. 49.
    Cox, B.T., Laufer, J.G., Beard, P.C.: The challenges for quantitative photoacoustic imaging. Proc. SPIE 7177, 717713 (2009) CrossRefGoogle Scholar
  50. 50.
    Diebold, G.J., Sun, T., Khan, M.I.: Photoacoustic monopole radiation in one, two, and three dimensions. Phys. Rev. Lett. 67(24), 3384–3387 (1991) CrossRefGoogle Scholar
  51. 51.
    Egorov, Y.V., Shubin, M.A.: Partial Differential Equations I. Encyclopaedia of Mathematical Sciences, vol. 30, pp. 1–259. Springer, Berlin (1992) MATHGoogle Scholar
  52. 52.
    Ehrenpreis, L.: The Universality of the Radon Transform. Oxford Univ. Press, London (2003) MATHCrossRefGoogle Scholar
  53. 53.
    Ehrenpreis, L., Kuchment, P., Panchenko, A.: Attenuated Radon transform and F. John’s equation. I. Range conditions. In: Grinberg, E.L., Berhanu, S., Knopp, M., Mendoza, G., Quinto, E.T. (eds.) Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis. AMS, Providence (2000) Google Scholar
  54. 54.
    Finch, D., Haltmeier, M., Rakesh: Inversion of spherical means and the wave equation in even dimensions. SIAM J. Appl. Math. 68(2), 392–412 (2007) MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Finch, D., Patch, S., Rakesh: Determining a function from its mean values over a family of spheres. SIAM J. Math. Anal. 35(5), 1213–1240 (2004) MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Finch, D., Rakesh: The spherical mean value operator with centers on a sphere. Inverse Probl. 23, S37–S50 (2007) MathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Finch, D., Rakesh: Range of the spherical mean value operator for functions supported in a ball. Inverse Probl. 22, 923–938 (2006) MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Finch, D., Rakesh: Recovering a function from its spherical mean values in two and three dimensions. In: Wang, L.V. (ed.) Photoacoustic Imaging and Spectroscopy, pp. 77–88. CRC Press, Boca Raton (2009) CrossRefGoogle Scholar
  59. 59.
    Gebauer, B., Scherzer, O.: Impedance-acoustic tomography. SIAM J. Appl. Math. 69, 565–576 (2009) MathSciNetCrossRefGoogle Scholar
  60. 60.
    Gelfand, I., Gindikin, S., Graev, M.: Selected Topics in Integral Geometry. Transl. Math. Monogr., vol. 220. Am. Math. Soc., Providence (2003) MATHGoogle Scholar
  61. 61.
    Gelfand, I., Graev, M., Vilenkin, N.: Generalized Functions. Integral Geometry and Representation Theory, vol. 5. Academic. Press, San Diego (1965) Google Scholar
  62. 62.
    Grün, H., Haltmeier, M., Paltauf, G., Burgholzer, P.: Photoacoustic tomography using a fiber based Fabry–Perot interferometer as an integrating line detector and image reconstruction by model-based time reversal method. Proc. SPIE 6631, 663107 (2007) CrossRefGoogle Scholar
  63. 63.
    Helgason, S.: The Radon Transform. Birkhäuser, Basel (1980) MATHCrossRefGoogle Scholar
  64. 64.
    Helgason, S.: Integral Geometry and Radon Transforms. Springer, New York (2010) Google Scholar
  65. 65.
    Herman, G. (ed.): Image Reconstruction from Projections. Topics in Applied Physics, vol. 32. Springer, Berlin (1979) Google Scholar
  66. 66.
    Hernandez-Figueroa, H.E., Zamboni-Rached, M., Recami, E. (eds.): Localized Waves. IEEE Press/Wiley, Hoboken (2008) Google Scholar
  67. 67.
    Hickmann, K.: Unique determination of acoustic properties from thermoacoustic data. Ph.D. Thesis, Oregon State University, Corvallis, OR (2010) Google Scholar
  68. 68.
    Hristova, Y.: Time reversal in thermoacoustic tomography: error estimate. Inverse Probl. 25, 1–14 (2009) MathSciNetCrossRefGoogle Scholar
  69. 69.
    Hristova, Y., Kuchment, P., Nguyen, L.: On reconstruction and time reversal in thermoacoustic tomography in homogeneous and non-homogeneous acoustic media. Inverse Probl. 24, 055006 (2008) MathSciNetCrossRefGoogle Scholar
  70. 70.
    Jin, X., Wang, L.V.: Thermoacoustic tomography with correction for acoustic speed variations. Phys. Med. Biol. 51, 6437–6448 (2006) CrossRefGoogle Scholar
  71. 71.
    John, F.: Plane Waves and Spherical Means Applied to Partial Differential Equations. Dover, New York (1971) Google Scholar
  72. 72.
    Kempe, M., Larionov, M., Zaslavsky, D., Genack, A.Z.: Acousto-optic tomography with multiply scattered light. J. Opt. Soc. Am. A 14, 1151–1158 (1997) CrossRefGoogle Scholar
  73. 73.
    Kenig, C.E., Sjöstrand, J., Uhlmann, G.: The Calderón problem with partial data. Ann. Math. 165(2), 567–591 (2007) MATHCrossRefGoogle Scholar
  74. 74.
    Kirsch, A.: On the existence of transmission eigenvalues. Inverse Probl. Imaging 3, 155–172 (2009) MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    Kruger, R.A., Liu, P., Fang, Y.R., Appledorn, C.R.: Photoacoustic ultrasound (PAUS) reconstruction tomography. Med. Phys. 22, 1605–1609 (1995) CrossRefGoogle Scholar
  76. 76.
    Kuchment, P.: Generalized transforms of Radon type and their applications. In: Olafsson, G., Quinto, E.T. (eds.) The Radon Transform, Inverse Problems, and Tomography. American Mathematical Society Short Course, January 3–4, 2005, Atlanta, Georgia. Proc. Symp. Appl. Math., vol. 63, pp. 67–91. AMS, Providence (2006) Google Scholar
  77. 77.
    Kuchment, P., Kunyansky, L.: Mathematics of thermoacoustic tomography. Eur. J. Appl. Math. 19, 191–224 (2008) MathSciNetMATHCrossRefGoogle Scholar
  78. 78.
    Kuchment, P., Kunyansky, L.: Synthetic focusing in ultrasound modulated tomography. Inverse Probl. Imaging 4(4), 665–673 (2010) MathSciNetMATHCrossRefGoogle Scholar
  79. 79.
    Kuchment, P., Kunyansky, L.: 2D and 3D reconstructions in acousto-electric tomography. Inverse Probl. 27, 055013 (2011) MathSciNetCrossRefGoogle Scholar
  80. 80.
    Kuchment, P., Kunyansky, L.: Mathematics of thermoacoustic and photoacoustic tomography. In: Scherzer, O. (ed.) Handbook of Mathematical Methods in Imaging, pp. 817–866. Springer, Berlin (2010) Google Scholar
  81. 81.
    Kuchment, P., Steinhauer, D.: Stabilizing Inverse Problems by Internal Data, preprint arXiv:1110.1819
  82. 82.
    Kuchment, P., Lancaster, K., Mogilevskaya, L.: On local tomography. Inverse Probl. 11, 571–589 (1995) MathSciNetMATHCrossRefGoogle Scholar
  83. 83.
    Kuchment, P., Quinto, E.T.: Some problems of integral geometry arising in tomography. In: Ehrenpreis, L. (ed.) The Universality of the Radon Transform. Oxford Univ. Press, London (2003). Chap. XI Google Scholar
  84. 84.
    Kuchment, P., Scherzer, O.: Mathematical Methods in Photoacoustic Imaging to appear in Encyclopedia of Applied and Computational Mathematics. Springer, Berlin (2012) Google Scholar
  85. 85.
    Kunyansky, L.A.: Explicit inversion formulae for the spherical mean Radon transform. Inverse Probl. 23, 373–383 (2007) MathSciNetMATHCrossRefGoogle Scholar
  86. 86.
    Kunyansky, L.: A series solution and a fast algorithm for the inversion of the spherical mean Radon transform. Inverse Probl. 23, S11–S20 (2007) MathSciNetMATHCrossRefGoogle Scholar
  87. 87.
    Kunyansky, L.: Thermoacoustic tomography with detectors on an open curve: an efficient reconstruction algorithm. Inverse Probl. 24(5), 055021 (2008) MathSciNetCrossRefGoogle Scholar
  88. 88.
    Kunyansky, L.: Reconstruction of a function from its spherical (circular) means with the centers lying on the surface of certain polygons and polyhedra. Inverse Probl. 27, 025012 (2011). doi: 10.1088/0266-5611/27/2/025012 MathSciNetCrossRefGoogle Scholar
  89. 89.
    Lavandier, B., Jossinet, J., Cathignol, D.: Quantitative assessment of ultrasound-induced resistance change in saline solution. Med. Biol. Eng. Comput. 38, 150–155 (2000) CrossRefGoogle Scholar
  90. 90.
    Lavandier, B., Jossinet, J., Cathignol, D.: Experimental measurement of the acousto-electric interaction signal in saline solution. Ultrasonics 38, 929–936 (2000) CrossRefGoogle Scholar
  91. 91.
    Leutz, W., Maret, G.: Ultrasonic modulation of multiply scattered light. Physica B 204, 14–19 (1995) CrossRefGoogle Scholar
  92. 92.
    Lin, V., Pinkus, A.: Fundamentality of ridge functions. J. Approx. Theory 75, 295–311 (1993) MathSciNetMATHCrossRefGoogle Scholar
  93. 93.
    Lin, V., Pinkus, A.: Approximation of multivariate functions. In: Dikshit, H.P., Micchelli, C.A. (eds.) Advances in Computational Mathematics, pp. 1–9. World Scientific, Singapore (1994) Google Scholar
  94. 94.
    Louis, A.K., Quinto, E.T.: Local tomographic methods in Sonar. In: Surveys on Solution Methods for Inverse Problems, pp. 147–154. Springer, Vienna (2000) CrossRefGoogle Scholar
  95. 95.
    Mathematics and Physics of Emerging Biomedical Imaging. The National Academies Press (1996). Available online at
  96. 96.
    McLaughlin, J.R., Yoon, J.-R.: Unique identifiability of elastic parameters from time-dependent interior displacement measurement. Inverse Probl. 20, 25–45 (2004) MathSciNetMATHCrossRefGoogle Scholar
  97. 97.
    Muthupillai, R., Lomas, D.J., Rossman, P.J., Greenleaf, J.F., Manduca, A., Ehman, R.L.: Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269(5232), 1854–1857 (1995). doi: 10.1126/science.7569924 CrossRefGoogle Scholar
  98. 98.
    Nachman, A.: Global uniqueness for a two-dimensional inverse boundary value problem. Ann. Math. 143(1), 71–96 (1996) MathSciNetMATHCrossRefGoogle Scholar
  99. 99.
    Nachman, A., Tamasan, A., Timonov, A.: Conductivity imaging with a single measurement of boundary and interior data. Inverse Probl. 23(6), 2551–2563 (2007) MathSciNetMATHCrossRefGoogle Scholar
  100. 100.
    Nachman, A., Tamasan, A., Timonov, A.: Recovering the conductivity from a single measurement of interior data. Inverse Probl. 25(3), 035014 (2009) MathSciNetCrossRefGoogle Scholar
  101. 101.
    Nachman, A., Tamasan, A., Timonov, A.: Current density impedance imaging. In: G. Bal, D. Finch, P. Kuchment, P. Stefanov, G. Uhlmann (eds.) Tomography and Inverse Transport Theory. Contemp. Math., vol. 559, pp. 135–150. AMS, Providence (2011) CrossRefGoogle Scholar
  102. 102.
    Nam, H.: Ultrasound modulated optical tomography. Ph.D. thesis, Texas A&M University (2002) Google Scholar
  103. 103.
    Nam, H., Dobson, D.: Ultrasound modulated optical tomography, preprint (2004) Google Scholar
  104. 104.
    Natterer, F.: The Mathematics of Computerized Tomography. Wiley, New York (1986). Reprinted in 2001 by the SIAM MATHGoogle Scholar
  105. 105.
    Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction. Monographs on Mathematical Modeling and Computation, vol. 5. Philadelphia, SIAM (2001) MATHCrossRefGoogle Scholar
  106. 106.
    Nguyen, L.V.: A family of inversion formulas in thermoacoustic tomography. Inverse Probl. Imaging 3(4), 649–675 (2009) MathSciNetMATHCrossRefGoogle Scholar
  107. 107.
    Nguyen, L.V.: On singularities and instability of reconstruction in thermoacoustic tomography, preprint arXiv:0911.5521v1
  108. 108.
    Oraevsky, A.A., Esenaliev, R.O., Jacques, S.L., Tittel, F.K.: Laser optoacoustic tomography for medical diagnostics principles. Proc. SPIE 2676, 22 (1996) CrossRefGoogle Scholar
  109. 109.
    Oraevsky, A.A., Jacques, S.L., Esenaliev, R.O., Tittel, F.K.: Laser-based optoacoustic imaging in biological tissues. Proc. SPIE 2134A, 122–128 (1994) Google Scholar
  110. 110.
    Päivärinta, L., Sylvester, J.: Transmission Eigenvalues. SIAM J. Math. Anal. 40, 738–753 (2008) MathSciNetMATHCrossRefGoogle Scholar
  111. 111.
    Palamodov, V.P.: Reconstructive Integral Geometry. Birkhäuser, Basel (2004) MATHCrossRefGoogle Scholar
  112. 112.
    Palamodov, V.: Remarks on the general Funk-Radon transform and thermoacoustic tomography. Inverse Probl. Imaging 4(4), 693–702 (2010) MathSciNetMATHCrossRefGoogle Scholar
  113. 113.
    Paltauf, G., Viator, J.A., Prahl, S.A., Jacques, S.L.: Iterative reconstruction algorithm for optoacoustic imaging. J. Acoust. Soc. Am. 112(4), 1536–1544 (2002) CrossRefGoogle Scholar
  114. 114.
    Patch, S.K., Scherzer, O.: Photo- and thermo-acoustic imaging. Inverse Probl. 23, S01–S10 (2007) MathSciNetCrossRefGoogle Scholar
  115. 115.
    Popov, D.A., Sushko, D.V.: A parametrix for the problem of optical-acoustic tomography. Dokl. Math. 65(1), 19–21 (2002) MATHGoogle Scholar
  116. 116.
    Popov, D.A., Sushko, D.V.: Image restoration in optical-acoustic tomography. Probl. Inf. Transm. 40(3), 254–278 (2004) MathSciNetMATHCrossRefGoogle Scholar
  117. 117.
    Qian, J., Stefanov, P., Uhlmann, G., Zhao, H.-K.: An efficient Neumann-series based algorithm for thermoacoustic tomography with variable sound speed. SIAM J. Imaging Sci. 4, 850–883 (2011) MathSciNetMATHCrossRefGoogle Scholar
  118. 118.
    Quinto, E.T.: Singularities of the X-ray transform and limited data tomography in ℝ2 and ℝ3. SIAM J. Math. Anal. 24, 1215–1225 (1993) MathSciNetMATHCrossRefGoogle Scholar
  119. 119.
    Ralston, J.V.: Solutions of the wave equation with localized energy. Commun. Pure Appl. Math. 22, 807–823 (1969) MathSciNetMATHCrossRefGoogle Scholar
  120. 120.
    Ren, K., Bal, G.: On multi-spectral quantitative photoacoustic tomography. Inverse Probl. 28, 025010 (2012) MathSciNetCrossRefGoogle Scholar
  121. 121.
    Scherzer, O. (ed.): Handbook of Mathematical Methods in Imaging. Springer, Berlin (2010) Google Scholar
  122. 122.
    Seo, J.K., Woo, E.Je.: Magnetic resonance electrical impedance tomography (MREIT). SIAM Rev. 53(1), 40–68 (2011) MathSciNetMATHCrossRefGoogle Scholar
  123. 123.
    Stefanov, P., Uhlmann, G.: Integral geometry of tensor fields on a class of non-simple Riemannian manifolds. Am. J. Math. 130(1), 239–268 (2008) MathSciNetMATHCrossRefGoogle Scholar
  124. 124.
    Stefanov, P., Uhlmann, G.: Thermoacoustic tomography with variable sound speed. Inverse Probl. 25(7), 075011 (2009) MathSciNetCrossRefGoogle Scholar
  125. 125.
    Stefanov, P., Uhlmann, G.: Thermoacoustic tomography arising in brain imaging. Inverse Probl. 27, 045004 (2011) MathSciNetCrossRefGoogle Scholar
  126. 126.
    Steinhauer, D.: A uniqueness theorem for thermoacoustic tomography in the case of limited boundary data, preprint arXiv:0902.2838
  127. 127.
    Steinhauer, D.: A reconstruction procedure for thermoacoustic tomography in the case of limited boundary data, preprint arXiv:0905.2954
  128. 128.
    Sylvester, J.: Discreteness of transmission eigenvalues via upper triangular compact operators, preprint arXiv:1104.4336
  129. 129.
    Sylvester, J., Uhlmann, G.: A global uniqueness theorem for an inverse boundary value problem. Ann. Math. 125, 153–169 (1987) MathSciNetMATHCrossRefGoogle Scholar
  130. 130.
    Tam, A.C.: Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58(2), 381–431 (1986) CrossRefGoogle Scholar
  131. 131.
    Tuchin, V.V. (ed.): Handbook of Optical Biomedical Diagnostics. SPIE, Bellingham (2002) Google Scholar
  132. 132.
    Uhlmann, G.: Inverse boundary value problems and applications. Astérisque 207, 153–211 (1992) MathSciNetGoogle Scholar
  133. 133.
    Uhlmann, G. (ed.): Inside Out: Inverse Problems and Applications. MSRI Publ. Cambridge University Press, Cambridge (2003) MATHGoogle Scholar
  134. 134.
    Uhlmann, G.: (ed.) Inside Out: Inverse Problems and Applications. MSRI Publ., vol. 2 (to appear) Google Scholar
  135. 135.
    Uhlmann, G.: Commentary on Calderón’s paper on an inverse boundary value problem. In: Bellow, A., Kenig, C.E., Malliavin, P. (eds.) Selected Papers of Alberto P. Calderón. With commentary, pp. 623–636. Am. Math. Soc., Providence (2008) Google Scholar
  136. 136.
    Vainberg, B.: The short-wave asymptotic behavior of the solutions of stationary problems, and the asymptotic behavior as t→∞ of the solutions of nonstationary problems. Russ. Math. Surv. 30(2), 1–58 (1975) MathSciNetMATHCrossRefGoogle Scholar
  137. 137.
    Vainberg, B.: Asymptotics Methods in the Equations of Mathematical Physics. Gordon and Breach, New York (1982) Google Scholar
  138. 138.
    Vo-Dinh, T. (ed.): Biomedical Photonics Handbook. CRC Press, Boca Raton (2003) Google Scholar
  139. 139.
    Wang, L.V. (ed.): Photoacoustic Imaging and Spectroscopy. CRC Press, Boca Raton (2009) Google Scholar
  140. 140.
    Wang, K., Anastasio, M.A.: Photoacoustic and thermoacoustic tomography: image formation principles. In: Scherzer, O. (ed.) Handbook of Mathematical Methods in Imaging. Springer, Berlin (2010). Chap. 28 Google Scholar
  141. 141.
    Wang, L., Wu, H.: Biomedical Optics. Wiley, New York (2007) Google Scholar
  142. 142.
    Woo, E.J., Seo, J.K.: Magnetic resonance electrical impedance tomography (MREIT) for high-resolution conductivity imaging. Physiol. Meas. 29, R1–R26 (2008) CrossRefGoogle Scholar
  143. 143.
    Xu, M., Wang, L.-H.V.: Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 77, 041101 (2006) CrossRefGoogle Scholar
  144. 144.
    Xu, Y., Wang, L.V.: Time reversal in photoacoustic tomography or thermoacoustic tomography. In: Wang, L.V. (ed.) Photoacoustic Imaging and Spectroscopy, pp. 117–120. CRC Press, Boca Raton (2009) CrossRefGoogle Scholar
  145. 145.
    Xu, Y., Wang, L., Ambartsoumian, G., Kuchment, P.: Reconstructions in limited view thermoacoustic tomography. Med. Phys. 31(4), 724–733 (2004) CrossRefGoogle Scholar
  146. 146.
    Xu, Y., Wang, L., Ambartsoumian, G., Kuchment, P.: Limited view thermoacoustic tomography. In: Wang, L.H. (ed.) Photoacoustic Imaging and Spectroscopy, pp. 61–73. CRC Press, Boca Raton (2009). Chap. 6 Google Scholar
  147. 147.
    Yuan, Z., Zhang, Q., Jiang, H.: Simultaneous reconstruction of acoustic and optical properties of heterogeneous media by quantitative photoacoustic tomography. Opt. Express 14(15), 6749 (2006) CrossRefGoogle Scholar
  148. 148.
    Zhang, H., Wang, L.: Acousto-electric tomography. Proc. SPIE 5320, 145–149 (2004) CrossRefGoogle Scholar
  149. 149.
    Zhang, J., Anastasio, M.A.: Reconstruction of speed-of-sound and electromagnetic absorption distributions in photoacoustic tomography. Proc. SPIE 6086, 608619 (2006) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  1. 1.Texas A&M UniversityCollege StationUSA

Personalised recommendations