Skip to main content

Microlocal Analysis of Elliptical Radon Transforms with Foci on a Line

  • Conference paper
Book cover The Mathematical Legacy of Leon Ehrenpreis

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 16))

Abstract

In this paper, we take a microlocal approach to the study of an integral geometric problem involving integrals of a function on the plane over two-dimensional sets of ellipses on the plane. We focus on two cases: (a) the family of ellipses where one focus is fixed at the origin and the other moves along the x-axis, and (b) the family of ellipses having a common offset geometry.

For case (a), we characterize the Radon transform as a Fourier integral operator associated to a fold and blowdown. This has implications on how the operator adds singularities, how backprojection reconstructions will show those singularities, and in comparison of the strengths of the original and added singularities in a Sobolev sense.

For case (b), we show that this Radon transform has similar structure to case (a): it is a Fourier integral operator associated to a fold and blowdown. This case is related to previous results of authors one and three. We characterize singularities that are added by the reconstruction operator, and we present reconstructions from the authors’ algorithm that illustrate the microlocal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agranovsky, M., Quinto, E.T.: Injectivity sets for Radon transform over circles and complete systems of radial functions. J. Funct. Anal. 139, 383–414 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambartsoumian, G., Krishnan, V., Quinto, E.T.: The microlocal analysis of the ultrasound operator with circular source and receiver trajectory. Tech. rep., University of Texas at Arlington, University of Bridgeport, Tufts University (2011, submitted)

    Google Scholar 

  3. Andersson, L.E.: On the determination of a function from spherical averages. SIAM J. Math. Anal. 19, 214–232 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boman, J.: Helgason’s Support Theorem for Radon Transforms—A New Proof and a Generalization. Lecture Notes in Mathematics, vol. 1497, pp. 1–5. Springer, Berlin (1991)

    Google Scholar 

  5. Boman, J., Quinto, E.T.: Support theorems for real analytic Radon transforms. Duke Math. J. 55, 943–948 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheney, M.: A mathematical tutorial on synthetic aperture radar. SIAM Rev. 43(2), 301–312 (2001) (electronic). doi:10.1137/S0036144500368859

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheney, M., Borden, B.: Microlocal structure of inverse synthetic aperture radar data. Inverse Probl. 19(1), 173–193 (2003). doi:10.1088/0266-5611/19/1/310

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheney, M., Borden, B.: Fundamentals of Radar imaging. In: CBMS-NSF Regional Conference. Series in Applied Mathematics, vol. 79. Society for Industrial and Applied Mathematics, Philadelphia (2009)

    Google Scholar 

  9. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. II. Wiley-Interscience, New York (1962)

    MATH  Google Scholar 

  10. Miller, D.M.O., Beylkin, G.: A new slant on seismic imaging: Migration and integral geometry. Geophysics 52(7), 943–964 (1987)

    Article  Google Scholar 

  11. deHoop, M., Smith, H., Uhlmann, G., van der Hilst, R.: Seismic imaging with the generalized Radon transform: A curvelet transform perspective. Inverse Probl. 25 (2009). doi:10.1088/0266-5611/25/2/025005

  12. Ehrenpreis, L.: Three Problems at Mount Holyoke. Contemporary Math., pp. 123–130 (2001)

    Google Scholar 

  13. Ehrenpreis, L.: The Universality of the Radon Transform. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  14. Faridani, A., Finch, D., Ritman, E.L., Smith, K.T.: Local tomography, II. SIAM J. Appl. Math. 57, 1095–1127 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Faridani, A., Ritman, E.L., Smith, K.T.: Local tomography. SIAM J. Appl. Math. 52, 459–484 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Felea, R.: Composition of Fourier integral operators with fold and blowdown singularities. Commun. Partial Differ. Equ. 30(10–12), 1717–1740 (2005). doi10.1080/03605300500299968

    Article  MathSciNet  MATH  Google Scholar 

  17. Felea, R.: Displacement of artefacts in inverse scattering. Inverse Probl. 23(4), 1519–1531 (2007). doi:10.1088/0266-5611/23/4/009

    Article  MathSciNet  MATH  Google Scholar 

  18. Felea, R., Greenleaf, A.: An FIO calculus for marine seismic imaging: folds and cross caps. Commun. Partial Differ. Equ. 33(1–3), 45–77 (2008). doi:10.1080/03605300701318716

    Article  MathSciNet  MATH  Google Scholar 

  19. Felea, R., Greenleaf, A., Pramanik, M.: An FIO calculus for marine seismic imaging, II: Sobolev estimates. Tech. rep., University of Rochester, Rochester Institute of Technology. Preprint (2010)

    Google Scholar 

  20. Felea, R., Quinto, E.T.: The microlocal properties of the local 3-D SPECT operator. SIAM J. Math. Anal. 43(3), 1145–1157 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Finch, D.V., Lan, I.R., Uhlmann, G.: Microlocal analysis of the restricted X-ray transform with sources on a curve. In: Uhlmann, G. (ed.) Inside out, Inverse Problems and Applications. MSRI Publications, vol. 47, pp. 193–218. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  22. Funk, P.: Über eine geometrische Anwendung der Abelschen Integralgleichung. Math. Ann. 77, 129–135 (1916)

    Article  MathSciNet  Google Scholar 

  23. Globevnik, J.: Zero integrals on circles and characterizations of harmonic and analytic functions. Trans. Am. Math. Soc. 317, 313–330 (1990)

    Article  MathSciNet  Google Scholar 

  24. Golubitsky, M., Guillemin, V.: Stable Mappings and Their Singularities. Graduate Texts in Mathematics, vol. 14. Springer, New York (1973)

    Book  MATH  Google Scholar 

  25. Greenleaf, A., Uhlmann, G.: Nonlocal inversion formulas for the X-ray transform. Duke Math. J. 58(1), 205–240 (1989). doi:10.1215/S0012-7094-89-05811-0

    Article  MathSciNet  MATH  Google Scholar 

  26. Greenleaf, A., Uhlmann, G.: Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms. Ann. Inst. Fourier (Grenoble) 40(2), 443–466 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guillemin, V.: Some remarks on integral geometry. Tech. rep., MIT (1975)

    Google Scholar 

  28. Guillemin, V.: On some results of Gelfand in integral geometry. Proc. Symp. Pure Math. 43, 149–155 (1985)

    MathSciNet  Google Scholar 

  29. Guillemin, V., Sternberg, S.: Geometric Asymptotics. American Mathematical Society, Providence (1977). Mathematical Surveys, No. 14

    MATH  Google Scholar 

  30. Helgason, S.: The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds. Acta Math. 113, 153–180 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Classics in Mathematics. Springer, Berlin (2003). Distribution theory and Fourier analysis, Reprint of the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)]

    Google Scholar 

  32. Horne, A., Yates, G.: Bistatic synthetic aperture radar. In: Proceedings of IEEE Radar Conference, pp. 6–10 (2002)

    Google Scholar 

  33. John, F.: Plane Waves and Spherical Means Applied to Partial Differential Equations. Interscience, New York (1966)

    Google Scholar 

  34. Katsevich, A.: Improved cone beam local tomography. Inverse Probl. 22, 627–643 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Krishnan, V.P.: A support theorem for the geodesic ray transform on functions. J. Fourier Anal. Appl. 15(4), 515–520 (2009). doi:10.1007/s00041-009-9061-5

    Article  MathSciNet  MATH  Google Scholar 

  36. Krishnan, V.P., Quinto, E.T.: Microlocal aspects of bistatic synthetic aperture radar imaging. Inverse Probl. Theor. Imaging 5, 659–674 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Krishnan, V.P., Stefanov, P.: A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Probl. Theor. Imaging 3(3), 453–464 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Levinson, H.: Algorithms for Bistatic Radar and Ultrasound Imaging, Senior Honors Thesis with Highest Thesis Honors. Tufts University (2011)

    Google Scholar 

  39. Louis, A.K., Maaß, P.: Contour reconstruction in 3-D X-Ray CT. IEEE Trans. Med. Imaging 12(4), 764–769 (1993)

    Article  Google Scholar 

  40. Mensah, S., Franceschini, E.: Near-field ultrasound tomography. J. Acoust. Soc. Am. 121(3), 1423–1433 (2007). doi:10.1109/TIP.2009.2039662

    Article  Google Scholar 

  41. Nolan, C.J., Cheney, M.: Synthetic aperture inversion. Inverse Probl. 18(1), 221–235 (2002). doi:10.1088/0266-5611/18/1/315

    Article  MathSciNet  MATH  Google Scholar 

  42. Nolan, C.J., Cheney, M.: Microlocal analysis of synthetic aperture radar imaging. J. Fourier Anal. Appl. 10(2), 133–148 (2004). doi:10.1007/s00041-004-8008-0

    Article  MathSciNet  MATH  Google Scholar 

  43. Nolan, C.J., Cheney, M., Dowling, T., Gaburro, R.: Enhanced angular resolution from multiply scattered waves. Inverse Probl. 22(5), 1817–1834 (2006). doi:10.1088/0266-5611/22/5/017

    Article  MathSciNet  MATH  Google Scholar 

  44. Nolan, C.J., Dowling, T.: Private communication

    Google Scholar 

  45. Nolan, C.J., Symes, W.W.: Global solution of a linearized inverse problem for the wave equation. Commun. Partial Differ. Equ. 22(5–6), 919–952 (1997). doi:10.1080/03605309708821289

    MathSciNet  MATH  Google Scholar 

  46. Quinto, E.T.: The dependence of the generalized Radon transform on defining measures. Trans. Am. Math. Soc. 257, 331–346 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  47. Quinto, E.T.: Singularities of the X-ray transform and limited data tomography in ℝ2 and ℝ3. SIAM J. Math. Anal. 24, 1215–1225 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  48. Quinto, E.T.: Support theorems for the spherical Radon transform on manifolds. Int. Math. Res. Not. 2006, 1–17 (2006). Article ID = 67205

    Google Scholar 

  49. Quinto, E.T.: Local algorithms in exterior tomography. J. Comput. Appl. Math. 199, 141–148 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Quinto, E.T., Bakhos, T., Chung, S.: A local algorithm for Slant Hole SPECT. In: Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), Centro De Georgi, Pisa. CRM Series, vol. 7, pp. 321–348 (2008)

    Google Scholar 

  51. Quinto, E.T., Öktem, O.: Local tomography in electron microscopy. SIAM J. Appl. Math. 68, 1282–1303 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  52. Stefanov, P.: Microlocal approach to tensor tomography and boundary and lens rigidity. Serdica Math. J. 34(1), 67–112 (2008)

    MathSciNet  MATH  Google Scholar 

  53. Stefanov, P., Uhlmann, G.: Boundary rigidity and stability for generic simple metrics. J. Am. Math. Soc. 18(4), 975–1003 (2005) (electronic). doi:10.1090/S0894-0347-05-00494-7

    Article  MathSciNet  MATH  Google Scholar 

  54. Vaidyanathan, R.S., Lewis, M., Ambartsoumian, G., Aktosun, T.: Reconstruction algorithms for interior and exterior spherical Radon transform-based ultrasound imaging. In: Proceedings of SPIE, v. 7265, Medical Imaging 2009: Ultrasonic Imaging and Signal Processing, pp. 72,651I 1–8 (2009)

    Google Scholar 

  55. Vainberg, E., Kazak, I.A., Kurozaev, V.P.: Reconstruction of the internal three-dimensional structure of objects based on real-time integral projections. Sov. J. Nondestr. Test. 17, 415–423 (1981)

    Google Scholar 

  56. Volchkov, V.V.: Integral Geometry and Convolution Equations. Kluwer Academic, Dordrecht (2003)

    Book  MATH  Google Scholar 

  57. Yarman, C.E., Yazıcı, B., Cheney, M.: Bistatic synthetic aperture radar imaging with arbitrary trajectories. IEEE Trans. Image Process. 17(1), 84–93 (2008)

    Article  MathSciNet  Google Scholar 

  58. Zalcman, L.: Offbeat integral geometry. Am. Math. Mon. 87, 161–175 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

All three authors were supported by Quinto’s NSF grant DMS 0908015. Krishnan was supported by summer postdoctoral supplements to Quinto’s NSF grant DMS 0908015 in 2010 (DMS 1028096) and 2011 (DMS 1129154), and by NSF grant DMS 1109417. Levinson received REU support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Todd Quinto .

Editor information

Editors and Affiliations

Additional information

We dedicate this article to the memory of Leon Ehrenpreis, a brilliant mathematician and a Mensch.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this paper

Cite this paper

Krishnan, V.P., Levinson, H., Quinto, E.T. (2012). Microlocal Analysis of Elliptical Radon Transforms with Foci on a Line. In: Sabadini, I., Struppa, D. (eds) The Mathematical Legacy of Leon Ehrenpreis. Springer Proceedings in Mathematics, vol 16. Springer, Milano. https://doi.org/10.1007/978-88-470-1947-8_11

Download citation

Publish with us

Policies and ethics