Advertisement

Microlocal Analysis of Elliptical Radon Transforms with Foci on a Line

  • Venkateswaran P. Krishnan
  • Howard Levinson
  • Eric Todd Quinto
Part of the Springer Proceedings in Mathematics book series (PROM, volume 16)

Abstract

In this paper, we take a microlocal approach to the study of an integral geometric problem involving integrals of a function on the plane over two-dimensional sets of ellipses on the plane. We focus on two cases: (a) the family of ellipses where one focus is fixed at the origin and the other moves along the x-axis, and (b) the family of ellipses having a common offset geometry.

For case (a), we characterize the Radon transform as a Fourier integral operator associated to a fold and blowdown. This has implications on how the operator adds singularities, how backprojection reconstructions will show those singularities, and in comparison of the strengths of the original and added singularities in a Sobolev sense.

For case (b), we show that this Radon transform has similar structure to case (a): it is a Fourier integral operator associated to a fold and blowdown. This case is related to previous results of authors one and three. We characterize singularities that are added by the reconstruction operator, and we present reconstructions from the authors’ algorithm that illustrate the microlocal properties.

Keywords

Synthetic Aperture Radar Synthetic Aperture Radar Imaging Flight Path Fourier Integral Operator Reconstruction Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

All three authors were supported by Quinto’s NSF grant DMS 0908015. Krishnan was supported by summer postdoctoral supplements to Quinto’s NSF grant DMS 0908015 in 2010 (DMS 1028096) and 2011 (DMS 1129154), and by NSF grant DMS 1109417. Levinson received REU support.

References

  1. 1.
    Agranovsky, M., Quinto, E.T.: Injectivity sets for Radon transform over circles and complete systems of radial functions. J. Funct. Anal. 139, 383–414 (1996) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Ambartsoumian, G., Krishnan, V., Quinto, E.T.: The microlocal analysis of the ultrasound operator with circular source and receiver trajectory. Tech. rep., University of Texas at Arlington, University of Bridgeport, Tufts University (2011, submitted) Google Scholar
  3. 3.
    Andersson, L.E.: On the determination of a function from spherical averages. SIAM J. Math. Anal. 19, 214–232 (1988) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Boman, J.: Helgason’s Support Theorem for Radon Transforms—A New Proof and a Generalization. Lecture Notes in Mathematics, vol. 1497, pp. 1–5. Springer, Berlin (1991) Google Scholar
  5. 5.
    Boman, J., Quinto, E.T.: Support theorems for real analytic Radon transforms. Duke Math. J. 55, 943–948 (1987) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Cheney, M.: A mathematical tutorial on synthetic aperture radar. SIAM Rev. 43(2), 301–312 (2001) (electronic). doi: 10.1137/S0036144500368859 MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Cheney, M., Borden, B.: Microlocal structure of inverse synthetic aperture radar data. Inverse Probl. 19(1), 173–193 (2003). doi: 10.1088/0266-5611/19/1/310 MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Cheney, M., Borden, B.: Fundamentals of Radar imaging. In: CBMS-NSF Regional Conference. Series in Applied Mathematics, vol. 79. Society for Industrial and Applied Mathematics, Philadelphia (2009) Google Scholar
  9. 9.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. II. Wiley-Interscience, New York (1962) MATHGoogle Scholar
  10. 10.
    Miller, D.M.O., Beylkin, G.: A new slant on seismic imaging: Migration and integral geometry. Geophysics 52(7), 943–964 (1987) CrossRefGoogle Scholar
  11. 11.
    deHoop, M., Smith, H., Uhlmann, G., van der Hilst, R.: Seismic imaging with the generalized Radon transform: A curvelet transform perspective. Inverse Probl. 25 (2009). doi: 10.1088/0266-5611/25/2/025005
  12. 12.
    Ehrenpreis, L.: Three Problems at Mount Holyoke. Contemporary Math., pp. 123–130 (2001) Google Scholar
  13. 13.
    Ehrenpreis, L.: The Universality of the Radon Transform. Oxford University Press, Oxford (2003) MATHCrossRefGoogle Scholar
  14. 14.
    Faridani, A., Finch, D., Ritman, E.L., Smith, K.T.: Local tomography, II. SIAM J. Appl. Math. 57, 1095–1127 (1997) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Faridani, A., Ritman, E.L., Smith, K.T.: Local tomography. SIAM J. Appl. Math. 52, 459–484 (1992) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Felea, R.: Composition of Fourier integral operators with fold and blowdown singularities. Commun. Partial Differ. Equ. 30(10–12), 1717–1740 (2005). doi 10.1080/03605300500299968 MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Felea, R.: Displacement of artefacts in inverse scattering. Inverse Probl. 23(4), 1519–1531 (2007). doi: 10.1088/0266-5611/23/4/009 MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Felea, R., Greenleaf, A.: An FIO calculus for marine seismic imaging: folds and cross caps. Commun. Partial Differ. Equ. 33(1–3), 45–77 (2008). doi: 10.1080/03605300701318716 MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Felea, R., Greenleaf, A., Pramanik, M.: An FIO calculus for marine seismic imaging, II: Sobolev estimates. Tech. rep., University of Rochester, Rochester Institute of Technology. Preprint (2010) Google Scholar
  20. 20.
    Felea, R., Quinto, E.T.: The microlocal properties of the local 3-D SPECT operator. SIAM J. Math. Anal. 43(3), 1145–1157 (2011) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Finch, D.V., Lan, I.R., Uhlmann, G.: Microlocal analysis of the restricted X-ray transform with sources on a curve. In: Uhlmann, G. (ed.) Inside out, Inverse Problems and Applications. MSRI Publications, vol. 47, pp. 193–218. Cambridge University Press, Cambridge (2003) Google Scholar
  22. 22.
    Funk, P.: Über eine geometrische Anwendung der Abelschen Integralgleichung. Math. Ann. 77, 129–135 (1916) MathSciNetCrossRefGoogle Scholar
  23. 23.
    Globevnik, J.: Zero integrals on circles and characterizations of harmonic and analytic functions. Trans. Am. Math. Soc. 317, 313–330 (1990) MathSciNetCrossRefGoogle Scholar
  24. 24.
    Golubitsky, M., Guillemin, V.: Stable Mappings and Their Singularities. Graduate Texts in Mathematics, vol. 14. Springer, New York (1973) MATHCrossRefGoogle Scholar
  25. 25.
    Greenleaf, A., Uhlmann, G.: Nonlocal inversion formulas for the X-ray transform. Duke Math. J. 58(1), 205–240 (1989). doi: 10.1215/S0012-7094-89-05811-0 MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Greenleaf, A., Uhlmann, G.: Composition of some singular Fourier integral operators and estimates for restricted X-ray transforms. Ann. Inst. Fourier (Grenoble) 40(2), 443–466 (1990) MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Guillemin, V.: Some remarks on integral geometry. Tech. rep., MIT (1975) Google Scholar
  28. 28.
    Guillemin, V.: On some results of Gelfand in integral geometry. Proc. Symp. Pure Math. 43, 149–155 (1985) MathSciNetGoogle Scholar
  29. 29.
    Guillemin, V., Sternberg, S.: Geometric Asymptotics. American Mathematical Society, Providence (1977). Mathematical Surveys, No. 14 MATHGoogle Scholar
  30. 30.
    Helgason, S.: The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds. Acta Math. 113, 153–180 (1965) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Classics in Mathematics. Springer, Berlin (2003). Distribution theory and Fourier analysis, Reprint of the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)] Google Scholar
  32. 32.
    Horne, A., Yates, G.: Bistatic synthetic aperture radar. In: Proceedings of IEEE Radar Conference, pp. 6–10 (2002) Google Scholar
  33. 33.
    John, F.: Plane Waves and Spherical Means Applied to Partial Differential Equations. Interscience, New York (1966) Google Scholar
  34. 34.
    Katsevich, A.: Improved cone beam local tomography. Inverse Probl. 22, 627–643 (2006) MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Krishnan, V.P.: A support theorem for the geodesic ray transform on functions. J. Fourier Anal. Appl. 15(4), 515–520 (2009). doi: 10.1007/s00041-009-9061-5 MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Krishnan, V.P., Quinto, E.T.: Microlocal aspects of bistatic synthetic aperture radar imaging. Inverse Probl. Theor. Imaging 5, 659–674 (2011) MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Krishnan, V.P., Stefanov, P.: A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Probl. Theor. Imaging 3(3), 453–464 (2009) MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Levinson, H.: Algorithms for Bistatic Radar and Ultrasound Imaging, Senior Honors Thesis with Highest Thesis Honors. Tufts University (2011) Google Scholar
  39. 39.
    Louis, A.K., Maaß, P.: Contour reconstruction in 3-D X-Ray CT. IEEE Trans. Med. Imaging 12(4), 764–769 (1993) CrossRefGoogle Scholar
  40. 40.
    Mensah, S., Franceschini, E.: Near-field ultrasound tomography. J. Acoust. Soc. Am. 121(3), 1423–1433 (2007). doi: 10.1109/TIP.2009.2039662 CrossRefGoogle Scholar
  41. 41.
    Nolan, C.J., Cheney, M.: Synthetic aperture inversion. Inverse Probl. 18(1), 221–235 (2002). doi: 10.1088/0266-5611/18/1/315 MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Nolan, C.J., Cheney, M.: Microlocal analysis of synthetic aperture radar imaging. J. Fourier Anal. Appl. 10(2), 133–148 (2004). doi: 10.1007/s00041-004-8008-0 MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Nolan, C.J., Cheney, M., Dowling, T., Gaburro, R.: Enhanced angular resolution from multiply scattered waves. Inverse Probl. 22(5), 1817–1834 (2006). doi: 10.1088/0266-5611/22/5/017 MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Nolan, C.J., Dowling, T.: Private communication Google Scholar
  45. 45.
    Nolan, C.J., Symes, W.W.: Global solution of a linearized inverse problem for the wave equation. Commun. Partial Differ. Equ. 22(5–6), 919–952 (1997). doi: 10.1080/03605309708821289 MathSciNetMATHGoogle Scholar
  46. 46.
    Quinto, E.T.: The dependence of the generalized Radon transform on defining measures. Trans. Am. Math. Soc. 257, 331–346 (1980) MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Quinto, E.T.: Singularities of the X-ray transform and limited data tomography in ℝ2 and ℝ3. SIAM J. Math. Anal. 24, 1215–1225 (1993) MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Quinto, E.T.: Support theorems for the spherical Radon transform on manifolds. Int. Math. Res. Not. 2006, 1–17 (2006). Article ID = 67205 Google Scholar
  49. 49.
    Quinto, E.T.: Local algorithms in exterior tomography. J. Comput. Appl. Math. 199, 141–148 (2007) MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Quinto, E.T., Bakhos, T., Chung, S.: A local algorithm for Slant Hole SPECT. In: Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), Centro De Georgi, Pisa. CRM Series, vol. 7, pp. 321–348 (2008) Google Scholar
  51. 51.
    Quinto, E.T., Öktem, O.: Local tomography in electron microscopy. SIAM J. Appl. Math. 68, 1282–1303 (2008) MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Stefanov, P.: Microlocal approach to tensor tomography and boundary and lens rigidity. Serdica Math. J. 34(1), 67–112 (2008) MathSciNetMATHGoogle Scholar
  53. 53.
    Stefanov, P., Uhlmann, G.: Boundary rigidity and stability for generic simple metrics. J. Am. Math. Soc. 18(4), 975–1003 (2005) (electronic). doi: 10.1090/S0894-0347-05-00494-7 MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Vaidyanathan, R.S., Lewis, M., Ambartsoumian, G., Aktosun, T.: Reconstruction algorithms for interior and exterior spherical Radon transform-based ultrasound imaging. In: Proceedings of SPIE, v. 7265, Medical Imaging 2009: Ultrasonic Imaging and Signal Processing, pp. 72,651I 1–8 (2009) Google Scholar
  55. 55.
    Vainberg, E., Kazak, I.A., Kurozaev, V.P.: Reconstruction of the internal three-dimensional structure of objects based on real-time integral projections. Sov. J. Nondestr. Test. 17, 415–423 (1981) Google Scholar
  56. 56.
    Volchkov, V.V.: Integral Geometry and Convolution Equations. Kluwer Academic, Dordrecht (2003) MATHCrossRefGoogle Scholar
  57. 57.
    Yarman, C.E., Yazıcı, B., Cheney, M.: Bistatic synthetic aperture radar imaging with arbitrary trajectories. IEEE Trans. Image Process. 17(1), 84–93 (2008) MathSciNetCrossRefGoogle Scholar
  58. 58.
    Zalcman, L.: Offbeat integral geometry. Am. Math. Mon. 87, 161–175 (1980) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Venkateswaran P. Krishnan
    • 1
  • Howard Levinson
    • 2
  • Eric Todd Quinto
    • 3
  1. 1.Tata Institute of Fundamental Research Centre for Applicable MathematicsBangaloreIndia
  2. 2.PittsburghUSA
  3. 3.Tufts UniversityMedfordUSA

Personalised recommendations