Geometric Properties of Boundary Orbit Accumulation Points

  • Steven G. Krantz
Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 16)


We study the automorphism group action on a bounded domain in ℂ n . In particular, we consider boundary orbit accumulation points, and what geometric properties they must have. These properties are formulated in the language of Levi geometry.


Bounded Domain Unit Ball Automorphism Group Finite Type Levi Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author is supported in part by the National Science Foundation and by the Dean of the Graduate School at Washington University.


  1. 1.
    Aladro, G.: The comparability of the Kobayashi approach region and the admissible approach region. Ill. J. Math. 33, 42–63 (1989) MathSciNetMATHGoogle Scholar
  2. 2.
    Bedford, E., Pinchuk, S.: Domains in ℂ2 with noncompact group of automorphisms. Math. Sb. Nov. Ser. 135(2), 147–157 (1988) Google Scholar
  3. 3.
    Bedford, E., Pinchuk, S.: Domains in ℂn+1, with non-compact automorphism group. J. Geom. Anal. 3, 165–191 (1991) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bedford, E., Pinchuk, S.: Convex domains with noncompact groups of automorphisms (Russian). Mat. Sb. 185, 3–26 (1994); translation in Russ. Acad. Sci. Sb. Math. 82, 1–20 (1995) Google Scholar
  5. 5.
    Bedford, E., Pinchuk, S.: Domains in ℂ2 with noncompact automorphism groups. Indiana Univ. Math. J. 47, 199–222 (1998) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Catlin, D.: Estimates of invariant metrics on pseudoconvex domains of dimension two. Math. Z. 200, 429–466 (1989) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Coupet, B., Pinchuk, S.: Holomorphic equivalence problem for weighted homogeneous rigid domains in ℂn+1. In: Complex Analysis in Modern Mathematics, FAZIS, Moscow, pp. 57–70 (2001) (Russian) Google Scholar
  8. 8.
    Gaussier, H., Kim, K.-T., Krantz, S.G.: A note on the Wong–Rosay theorem in complex manifolds. Complex Var. Theory Appl. 47, 761–768 (2002) MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Greene, R.E., Kim, K.-T., Krantz, S.G.: The Geometry of Complex Domains. Birkhäuser, Boston (2011, to appear) MATHCrossRefGoogle Scholar
  10. 10.
    Greene, R.E., Krantz, S.G.: Invariants of Bergman geometry and results concerning the automorphism groups of domains in ℂn. In: Geometrical and Algebraical Aspects in Several Complex Variables (Cetraro, 1989), pp. 107–136, Sem. Conf., 8, EditEl, Rende (1991) Google Scholar
  11. 11.
    Helgason, S.: Differential Geometry and Symmetric Spaces. Academic Press, New York (1962) MATHGoogle Scholar
  12. 12.
    Isaev, A., Krantz, S.G.: On the boundary orbit accumulation set for a domain with non-compact automorphism group. Mich. Math. J. 43, 611–617 (1996) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Kim, K.-T.: Domains in ℂn with a piecewise Levi flat boundary which possess a noncompact automorphism group. Math. Ann. 292, 575–586 (1992) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Kim, K.-T., Krantz, S.G.: Complex scaling and domains with non-compact automorphism group. Ill. J. Math. 45, 1273–1299 (2001) MathSciNetMATHGoogle Scholar
  15. 15.
    Kim, K.-T., Krantz, S.G.: Some new results on domains in complex space with non-compact automorphism group. J. Math. Anal. Appl. 281, 417–424 (2003) MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Kim, K.-T., Krantz, S.G.: A Kobayashi metric version of Bun Wong’s theorem. Complex Var. Elliptic Equ. 54, 355–369 (2009) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Kim, K.-T., Krantz, S.G.: Characterization of the Hilbert ball by its automorphism group. Trans. Am. Math. Soc. 354, 2797–2818 (2002) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Krantz, S.G.: Function Theory of Several Complex Variables, 2nd edn. American Mathematical Society, Providence (2001) MATHGoogle Scholar
  19. 19.
    Krantz, S.G.: Characterizations of smooth domains in ℂ by their biholomorphic self maps. Am. Math. Mon. 90, 555–557 (1983) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Krantz, S.G.: On the boundary behavior of the Kobayashi metric. Rocky Mt. J. Math. 22, 227–233 (1992) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Krantz, S.G.: Recent progress and future directions in several complex variables. In: Complex Analysis Seminar. Lecture Notes, vol. 1268, pp. 1–23. Springer, Berlin (1987) CrossRefGoogle Scholar
  22. 22.
    Krantz, S.G.: Topological/geometric properties of the orbit accumulation set. Complex Var. Elliptic Equ. (to appear) Google Scholar
  23. 23.
    Narasimhan, R.: Several Complex Variables. University of Chicago Press, Chicago (1971) MATHGoogle Scholar
  24. 24.
    Rosay, J.-P.: Sur une characterization de la boule parmi les domains de ℂn par son groupe d’automorphismes. Ann. Inst. Fourier XXIX, 91–97 (1979) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Verma, K.: A characterization of domains in ℂ2 with noncompact automorphism group. Math. Ann. 344, 645–701 (2009) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Wong, B.: Characterizations of the ball in ℂn by its automorphism group. Invent. Math. 41, 253–257 (1977) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  1. 1.Department of MathematicsWashington University in St. LouisSt. LouisUSA

Personalised recommendations