Modern Diagnosis in the Evaluation of Pulmonary Vascular Disease

  • Martine Remy-Jardin
  • Gerald F. Abbott


Among the various imaging modalities available in recent decades, computed tomography (CT) has remained the core technique for evaluating respiratory disorders. Over the last few years, this central position has been reinforced by the possibility of deriving morphological and functional information from the same data set. This approach is of major interest for evaluating pulmonary vascular diseases for three main reasons: (1) these disorders require optimal morphologic evaluation not only of the pulmonary vascular tree but also of surrounding structures, especially the lung parenchyma; (2) although we have currently reached an upper limit in terms of the resolution of morphology, CT has the ability to combine that high-quality morphologic imaging with perfusion imaging; and (3) it is mandatory to search for the cardiac consequences or causes of pulmonary vascular diseases, which requires a combination of high spatial and temporal resolution. Because all these complementary options are now available with CT, this course focuses on modern developments of CT applicable to evaluating pulmonary vascular diseases encountered in daily practice.


Chronic Obstructive Pulmonary Disease Acute Pulmonary Embolism Iodine Content Pulmonary Vascular Disease Pulmonary Compute Tomography Angiogram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Rogalla P, Kloeters C, Hein PA (2009) CT technology overview: 64-slice and beyond. Radiol Clin North Am 47:1–11PubMedCrossRefGoogle Scholar
  2. 2.
    Petersilka M, Bruder H, Krauss B et al (2008). Technical principles of dual source CT. Eur J Radiol 68:362–368PubMedCrossRefGoogle Scholar
  3. 3.
    Tacelli N, Remy-Jardin M, Flohr T et al (2010) Dual-source chest CT angiography with high temporal resolution and high pitch modes: evaluation of image quality in 140 patients. Eur Radiol 20:1188–1196PubMedCrossRefGoogle Scholar
  4. 4.
    Remy-Jardin M, Pistolesi M, Goodman LR et al (2007) Management of suspected acute pulmonary embolism in the era of CT angiography: a statement from the Fleischner Society. Radiology 245:315–329PubMedCrossRefGoogle Scholar
  5. 5.
    Holmquist F, Nyman U (2006) Eighty-peak kilovoltage 16-channel multidetector computed tomography and reduced contrast-medium doses tailored to body weight to diagnose pulmonary embolism in azotaemic patients. Eur Radiol 16:1165–1176PubMedCrossRefGoogle Scholar
  6. 6.
    Sigal-Cinqualbre AB, Hennequin R, Abada H et al (2004) Low-kilovoltage multi-detector row chest CT in adults: feasibility and effect on image quality and iodine dose. Radiology 231:169–174PubMedCrossRefGoogle Scholar
  7. 7.
    Schueller-Weidekamm C, Schaefer-Prokop CM, Weber M et al (2006) CT angiography of pulmonary arteries to detect pulmonary embolism: improvement of vascular enhancement with low kilovoltage settings. Radiology 241:899–907PubMedCrossRefGoogle Scholar
  8. 8.
    Heyer CM, Mohr PS, Lemburg SP et al (2007) Image quality and radiation exposure at pulmonary CT angiography with 100-or 120-kVp protocol: prospective randomized study. Radiology 245:577–583PubMedCrossRefGoogle Scholar
  9. 9.
    Gorgos AB, Remy-Jardin M, Duhamel A et al (2009) Evaluation of peripheral pulmonary arteries at 80 kV and at 140 kV: dual-energy computed tomography assessment in 51 patients. J Comput Assist Tomogr 33:981–986PubMedCrossRefGoogle Scholar
  10. 10.
    Remy-Jardin M, Faivre JB, Pontana F et al (2010) Thoracic applications of dual energy. Radiol Clin North Amer 48:193–205CrossRefGoogle Scholar
  11. 11.
    Pontana F, Faivre JB, Remy-Jardin M et al (2008) Lung perfusion with dual-energy multidetector-row CT (MDCT): Feasibility for the evaluation of acute pulmonary embolism in 117 consecutive patients. Acad Radiol 15:1494–1504PubMedCrossRefGoogle Scholar
  12. 12.
    Pontana F, Remy-Jardin M, Duhamel A et al (2010) Lung perfusion with dual energy multidetector-row CT: can it help recognize ground glass opacities of vascular origin? Acad Radiol 17:587–594PubMedCrossRefGoogle Scholar
  13. 13.
    Peinado VI, Barberà JA, Ramirez J et al (1988) Endothelial dysfunction in pulmonary arteries of patients with mild COPD. Am J Physiol 274:L908–L913Google Scholar
  14. 14.
    Yamato Y, Sun JP, Churg A et al (1997) Guinea pig pulmonary hypertension caused by cigarette smoke cannot be explained by capillary bed destruction. J Appl Physiol 82:1644–1653PubMedGoogle Scholar
  15. 15.
    Santos S, Peinado VI, Ramirez J et al (2002) Characterization of pulmonary vascular remodelling in smokers and patients with mild COPD. Eur Respir J 19:632–638PubMedCrossRefGoogle Scholar
  16. 16.
    Hoffman EA, Simon BA, McLennan G (2006) A structural and functional assessment of the lung via multidetector-row computed tomography. Proc Am Thorac Soc 3:519–534PubMedCrossRefGoogle Scholar
  17. 17.
    Pansini V, Remy-Jardin M, Faivre JB et al (2009) Assessment of lobar pulmonary perfusion in COPD patients: preliminary experience with dual-energy CT angiography. Eur Radiol 19:2834–2843PubMedCrossRefGoogle Scholar
  18. 18.
    Edwards PD, Bull RK, Coulden R (1998) CT measurement of main pulmonary artery diameter. Br J Radiol 71:1018–1020PubMedGoogle Scholar
  19. 19.
    Revel MP, Faivre JB, Remy-Jardin M et al (2009) Pulmonary hypertension: ECG-gated 64-section CT angiographic evaluation of new functional parameters as diagnostic criteria. Radiology 250:558–566PubMedCrossRefGoogle Scholar
  20. 20.
    Flohr T, Prokop M, Becker CR et al (2002) A retrospectively ECG-gated multislice spiral CT scan and reconstruction technique with suppression of heart pulsation artifacts for cardio-thoracic imaging with extended volume coverage. Eur Radiol 12:1497–1503PubMedCrossRefGoogle Scholar
  21. 21.
    Coche E, Vlassenbroeck A, Roelants V et al (2005) Evaluation of biventricular ejection fraction with ECG-gated 16-slice CT: preliminary findings in acute pulmonary embolism in comparison with radionuclide ventriculography. Eur Radiol 15:1432–1440PubMedCrossRefGoogle Scholar
  22. 22.
    Delhaye D, Remy-Jardin M, Teisseire A et al (2006) Estimation of right ventricular ejection fraction by multidetector row CT: comparison with equilibrium radionuclide ventriculography, Part I. AJR Am J Roentgenol 187:1597–1804PubMedCrossRefGoogle Scholar
  23. 23.
    Kim TH, Ryu YH, Hur J et al (2005) Evaluation of right ventricular volume and mass using retrospective ECG-gated cardiac multidetector computed tomography: comparison with first-pass radionuclide angiography. Eur Radiol 15:1987–1993PubMedCrossRefGoogle Scholar
  24. 24.
    Salem R, Remy-Jardin M, Delhaye D et al (2006) Integrated cardiothoracic imaging with ECG-gated 64-slice multidetector-row CT: Initial findings in 133 patients. Eur Radiol 16:1973–1981PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2011

Authors and Affiliations

  • Martine Remy-Jardin
    • 1
  • Gerald F. Abbott
    • 2
  1. 1.Department of Cardiothoracic Imaging, Hospital CalmetteUniversity Center of LilleLilleFrance
  2. 2.Department of Imaging, Massachusetts General HospitalHarvard UniversityBostonUSA

Personalised recommendations