PET Imaging in Cardiovascular Disease

  • Markus Schwaiger
  • Sibylle I. Ziegler
  • Stephan G. Nekolla


Cardiovascular imaging has rapidly grown during the last 20 years. The established gold standard invasive cardiac catheterization for documenting coronary artery disease (CAD) is increasingly challenged by noninvasive imaging technologies. In the late 1970s, Gould et al. introduced the concept of coronary flow reserve as a functional measurement for defining the hemodynamic significance of coronary artery stenosis [1]. Functional measurements such a perfusion imaging using scintigraphic, ultrasound, and magnetic resonance (MR) techniques have enjoyed increasing clinical acceptance. Fractional pressure measurements are recognized as an important adjunct of the therapeutic decision-making process in the catheterization laboratory, reinforcing the concept of functional characterization of CAD [2]. There is now widespread consensus that noninvasive tests provide important diagnostic and prognostic information that complements the anatomic delineation of CAD obtainable by cardiac catheterization. Most international guidelines based on evidence criteria demand the combination of anatomic and functional information for indicating coronary interventions [3].


Positron Emission Tomography Myocardial Perfusion Imaging Coronary Artery Calcification Coronary Flow Reserve Coronary Artery Calcification Score 


  1. 1.
    Gould KL (2009) Coronary flow reserve and pharmacologic stress perfusion imaging: beginnings and evolution. JACC Cardiovasc Imaging 2:664–669PubMedCrossRefGoogle Scholar
  2. 2.
    Tonino PA, De Bruyne B, Pijls NH et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360(3):213–224PubMedCrossRefGoogle Scholar
  3. 3.
    Silber S, Albertsson P, Aviles FF et al (2005) Guidelines for percutaneous coronary interventions. The Task Force for Percutaneous Coronary Interventions of the European Society of Cardiology. Eur Heart J 26:804–847PubMedCrossRefGoogle Scholar
  4. 4.
    Kinahan PE, Townsend DW, Beyer T, Sashin D (1998) Attenuation correction for a combined 3D PET-CT scanner. Med Phys 25:2046–2053PubMedCrossRefGoogle Scholar
  5. 5.
    Schwaiger M, Ziegler SI, Nekolla SG (2005) PET/CT: Challenge for Nuclear Cardiology. J Nucl Med 46:1664–1667PubMedGoogle Scholar
  6. 6.
    Kajander S, Ukkonen H, Sipila H et al (2009) Low radiation dose imaging of myocardial perfusion and coronary angiography with a hybrid PET/CT scanner. Clin Physiol Funct Imaging 29:81–88PubMedCrossRefGoogle Scholar
  7. 7.
    Rixe J, Conradi G, Rolf A et al (2009) Radiation dose exposure of computed tomography coronary angiography — comparison of dual source-, 16-slice and 64-slice-CT. Heart (British Cardiac Society) 95:1337–1342CrossRefGoogle Scholar
  8. 8.
    Libby P (2001) Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 104:365–372PubMedCrossRefGoogle Scholar
  9. 9.
    Bateman TM (2004) Cardiac positron emission tomography and the role of adenosine pharmacologic stress. Am J Cardiol 94:19D–24D; discussion 24D–25DPubMedCrossRefGoogle Scholar
  10. 10.
    Sampson UK, Dorbala S, Limaye A et al (2007) Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll Cardiol 49:1052–1058PubMedCrossRefGoogle Scholar
  11. 11.
    Parkash R, deKemp RA, Ruddy TD et al (2004) Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol 11:440–449PubMedCrossRefGoogle Scholar
  12. 12.
    Esteves FP, Sanyal R, Nye JA et al (2008) Adenosine stress rubidium-82 PET/computed tomography in patients with known and suspected coronary artery disease. Nucl Med Commun 29:674–678PubMedCrossRefGoogle Scholar
  13. 13.
    Yoshinaga K, Chow BJ, Williams K et al (2006) What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol 48:1029–1039PubMedCrossRefGoogle Scholar
  14. 14.
    Beanlands RS, Muzik O, Melon P et al (1995) Noninvasive quantification of regional myocardial flow reserve in patients with coronary atherosclerosis using nitrogen-13 ammonia positron emission tomography. Determination of extent of altered vascular reactivity. J Am Coll Cardiol 26: 1465–1475PubMedCrossRefGoogle Scholar
  15. 15.
    Siegrist PT, Husmann L, Knabenhans M et al (2008) (13)N-ammonia myocardial perfusion imaging with a PET/CT scanner: impact on clinical decision making and cost-effectiveness. Eur J Nucl Med Mol Imaging 35:889–895PubMedCrossRefGoogle Scholar
  16. 16.
    Nekolla SG, Reder S, Saraste A et al (2009) Evaluation of the novel myocardial perfusion positron-emission tomography tracer 18F-BMS-747158-02: comparison to 13N-ammonia and validation with microspheres in a pig model. Circulation 119:2333–2342PubMedCrossRefGoogle Scholar
  17. 17.
    Yoshinaga K, Katoh C, Noriyasu K et al (2003) Reduction of coronary flow reserve in areas with and without ischemia on stress perfusion imaging in patients with coronary artery disease: a study using oxygen 15-labeled water PET. J Nucl Cardiol 10:275–283PubMedCrossRefGoogle Scholar
  18. 18.
    Husmann L, Wiegand M, Valenta I et al (2008) Diagnostic accuracy of myocardial perfusion imaging with single photon emission computed tomography and positron emission tomography: a comparison with coronary angiography. Int J Cardiovasc Imaging 24:511–518PubMedCrossRefGoogle Scholar
  19. 19.
    Pletcher MJ, Tice JA, Pignone M, Browner WS (2004) Using the coronary artery calcium score to predict coronary heart disease events: a systematic review and meta-analysis. Arch Intern Med 164:1285–1292PubMedCrossRefGoogle Scholar
  20. 20.
    Greenland P, LaBree L, Azen SP et al (2004) Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 291:1831–1832CrossRefGoogle Scholar
  21. 21.
    Anand DV, Lim E, Raval U et al (2004) Prevalence of silent myocardial ischemia in asymptomatic individuals with sub-clinical atherosclerosis detected by electron beam tomography. J Nucl Cardiol 11:450–457PubMedCrossRefGoogle Scholar
  22. 22.
    Berman DS, Wong ND, Gransar H et al (2004) Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J Am Coll Cardiol 44:923–930PubMedCrossRefGoogle Scholar
  23. 23.
    Brown TL, Merrill J, Hill P, Bengel FM (2008) Relationship of coronary calcium and myocardial perfusion in individuals with chest pain. Assessed by integrated rubidium-82 PET-CT. Nuklearmedizin 47:255–260PubMedGoogle Scholar
  24. 24.
    Schächinger V, Zeiher AM (2001) Prognostic implications of endothelial dysfunction: does it mean anything? Coron Artery Dis 12:435–443PubMedCrossRefGoogle Scholar
  25. 25.
    Schindler TH, Hornig B, Buser PT et al (2003) Prognostic value of abnormal vasoreactivity of epicardial coronary arteries to sympathetic stimulation in patients with normal coronary angiograms. Arterioscler Thromb Vasc Biol 23:495–501PubMedCrossRefGoogle Scholar
  26. 26.
    Halcox JP, Schenke WH, Zalos G et al (2002) Prognostic value of coronary vascular endothelial dysfunction. Circulation 106(6):653–658PubMedCrossRefGoogle Scholar
  27. 27.
    Herzog BA, Husmann L, Valenta I et al (2009) Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve, myocardial infarction. J Am Coll Cardiol 54:150–156PubMedCrossRefGoogle Scholar
  28. 28.
    van Werkhoven JM, Schuijf JD, Gaemperli O et al (2009) Prognostic value of multislice computed tomography and gated single-photon emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol 53:623–632PubMedCrossRefGoogle Scholar
  29. 29.
    Rudd JH, Warburton EA, Fryer TD et al (2002) Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 105:2708–2711PubMedCrossRefGoogle Scholar
  30. 30.
    Wykrzykowska J, Lehman S, Williams G et al (2009) Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med 50:563–568PubMedCrossRefGoogle Scholar
  31. 31.
    Schäfers M, Dutka D, Rhodes CG et al (1998) Myocardial presynaptic and postsynaptic autonomic dysfunction in hypertrophic cardiomyopathy. Circ Res 82:57–62PubMedCrossRefGoogle Scholar
  32. 32.
    Hundt W, Siebert K, Wintersperger BJ et al (2005) Assessment of global left ventricular function: comparison of cardiac multidetector-row computed tomography with angiocardiography. J Comput Assist Tomogr 29:373–381PubMedCrossRefGoogle Scholar
  33. 33.
    Makowski MR, Ebersberger U, Nekolla S, Schwaiger M (2008) In vivo molecular imaging of angiogenesis, targeting alphabeta3 integrin expression, in a patient after acute myocardial infarction. Eur Heart J 29:2201PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2011

Authors and Affiliations

  • Markus Schwaiger
    • 1
  • Sibylle I. Ziegler
    • 1
  • Stephan G. Nekolla
    • 1
  1. 1.Klinikum rechts der IsarTechnische Universität München, Nuklearmedizinische Klinik und PoliklinikMünchenGermany

Personalised recommendations