Skip to main content

PET Imaging in Cardiovascular Disease

  • Chapter
  • 861 Accesses

Abstract

Cardiovascular imaging has rapidly grown during the last 20 years. The established gold standard invasive cardiac catheterization for documenting coronary artery disease (CAD) is increasingly challenged by noninvasive imaging technologies. In the late 1970s, Gould et al. introduced the concept of coronary flow reserve as a functional measurement for defining the hemodynamic significance of coronary artery stenosis [1]. Functional measurements such a perfusion imaging using scintigraphic, ultrasound, and magnetic resonance (MR) techniques have enjoyed increasing clinical acceptance. Fractional pressure measurements are recognized as an important adjunct of the therapeutic decision-making process in the catheterization laboratory, reinforcing the concept of functional characterization of CAD [2]. There is now widespread consensus that noninvasive tests provide important diagnostic and prognostic information that complements the anatomic delineation of CAD obtainable by cardiac catheterization. Most international guidelines based on evidence criteria demand the combination of anatomic and functional information for indicating coronary interventions [3].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gould KL (2009) Coronary flow reserve and pharmacologic stress perfusion imaging: beginnings and evolution. JACC Cardiovasc Imaging 2:664–669

    Article  PubMed  Google Scholar 

  2. Tonino PA, De Bruyne B, Pijls NH et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360(3):213–224

    Article  PubMed  CAS  Google Scholar 

  3. Silber S, Albertsson P, Aviles FF et al (2005) Guidelines for percutaneous coronary interventions. The Task Force for Percutaneous Coronary Interventions of the European Society of Cardiology. Eur Heart J 26:804–847

    Article  PubMed  Google Scholar 

  4. Kinahan PE, Townsend DW, Beyer T, Sashin D (1998) Attenuation correction for a combined 3D PET-CT scanner. Med Phys 25:2046–2053

    Article  PubMed  CAS  Google Scholar 

  5. Schwaiger M, Ziegler SI, Nekolla SG (2005) PET/CT: Challenge for Nuclear Cardiology. J Nucl Med 46:1664–1667

    PubMed  Google Scholar 

  6. Kajander S, Ukkonen H, Sipila H et al (2009) Low radiation dose imaging of myocardial perfusion and coronary angiography with a hybrid PET/CT scanner. Clin Physiol Funct Imaging 29:81–88

    Article  PubMed  CAS  Google Scholar 

  7. Rixe J, Conradi G, Rolf A et al (2009) Radiation dose exposure of computed tomography coronary angiography — comparison of dual source-, 16-slice and 64-slice-CT. Heart (British Cardiac Society) 95:1337–1342

    Article  CAS  Google Scholar 

  8. Libby P (2001) Current concepts of the pathogenesis of the acute coronary syndromes. Circulation 104:365–372

    Article  PubMed  CAS  Google Scholar 

  9. Bateman TM (2004) Cardiac positron emission tomography and the role of adenosine pharmacologic stress. Am J Cardiol 94:19D–24D; discussion 24D–25D

    Article  PubMed  Google Scholar 

  10. Sampson UK, Dorbala S, Limaye A et al (2007) Diagnostic accuracy of rubidium-82 myocardial perfusion imaging with hybrid positron emission tomography/computed tomography in the detection of coronary artery disease. J Am Coll Cardiol 49:1052–1058

    Article  PubMed  CAS  Google Scholar 

  11. Parkash R, deKemp RA, Ruddy TD et al (2004) Potential utility of rubidium 82 PET quantification in patients with 3-vessel coronary artery disease. J Nucl Cardiol 11:440–449

    Article  PubMed  CAS  Google Scholar 

  12. Esteves FP, Sanyal R, Nye JA et al (2008) Adenosine stress rubidium-82 PET/computed tomography in patients with known and suspected coronary artery disease. Nucl Med Commun 29:674–678

    Article  PubMed  Google Scholar 

  13. Yoshinaga K, Chow BJ, Williams K et al (2006) What is the prognostic value of myocardial perfusion imaging using rubidium-82 positron emission tomography? J Am Coll Cardiol 48:1029–1039

    Article  PubMed  Google Scholar 

  14. Beanlands RS, Muzik O, Melon P et al (1995) Noninvasive quantification of regional myocardial flow reserve in patients with coronary atherosclerosis using nitrogen-13 ammonia positron emission tomography. Determination of extent of altered vascular reactivity. J Am Coll Cardiol 26: 1465–1475

    Article  PubMed  CAS  Google Scholar 

  15. Siegrist PT, Husmann L, Knabenhans M et al (2008) (13)N-ammonia myocardial perfusion imaging with a PET/CT scanner: impact on clinical decision making and cost-effectiveness. Eur J Nucl Med Mol Imaging 35:889–895

    Article  PubMed  Google Scholar 

  16. Nekolla SG, Reder S, Saraste A et al (2009) Evaluation of the novel myocardial perfusion positron-emission tomography tracer 18F-BMS-747158-02: comparison to 13N-ammonia and validation with microspheres in a pig model. Circulation 119:2333–2342

    Article  PubMed  CAS  Google Scholar 

  17. Yoshinaga K, Katoh C, Noriyasu K et al (2003) Reduction of coronary flow reserve in areas with and without ischemia on stress perfusion imaging in patients with coronary artery disease: a study using oxygen 15-labeled water PET. J Nucl Cardiol 10:275–283

    Article  PubMed  Google Scholar 

  18. Husmann L, Wiegand M, Valenta I et al (2008) Diagnostic accuracy of myocardial perfusion imaging with single photon emission computed tomography and positron emission tomography: a comparison with coronary angiography. Int J Cardiovasc Imaging 24:511–518

    Article  PubMed  Google Scholar 

  19. Pletcher MJ, Tice JA, Pignone M, Browner WS (2004) Using the coronary artery calcium score to predict coronary heart disease events: a systematic review and meta-analysis. Arch Intern Med 164:1285–1292

    Article  PubMed  Google Scholar 

  20. Greenland P, LaBree L, Azen SP et al (2004) Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 291:1831–1832

    Article  Google Scholar 

  21. Anand DV, Lim E, Raval U et al (2004) Prevalence of silent myocardial ischemia in asymptomatic individuals with sub-clinical atherosclerosis detected by electron beam tomography. J Nucl Cardiol 11:450–457

    Article  PubMed  Google Scholar 

  22. Berman DS, Wong ND, Gransar H et al (2004) Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J Am Coll Cardiol 44:923–930

    Article  PubMed  CAS  Google Scholar 

  23. Brown TL, Merrill J, Hill P, Bengel FM (2008) Relationship of coronary calcium and myocardial perfusion in individuals with chest pain. Assessed by integrated rubidium-82 PET-CT. Nuklearmedizin 47:255–260

    PubMed  CAS  Google Scholar 

  24. Schächinger V, Zeiher AM (2001) Prognostic implications of endothelial dysfunction: does it mean anything? Coron Artery Dis 12:435–443

    Article  PubMed  Google Scholar 

  25. Schindler TH, Hornig B, Buser PT et al (2003) Prognostic value of abnormal vasoreactivity of epicardial coronary arteries to sympathetic stimulation in patients with normal coronary angiograms. Arterioscler Thromb Vasc Biol 23:495–501

    Article  PubMed  CAS  Google Scholar 

  26. Halcox JP, Schenke WH, Zalos G et al (2002) Prognostic value of coronary vascular endothelial dysfunction. Circulation 106(6):653–658

    Article  PubMed  Google Scholar 

  27. Herzog BA, Husmann L, Valenta I et al (2009) Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve, myocardial infarction. J Am Coll Cardiol 54:150–156

    Article  PubMed  Google Scholar 

  28. van Werkhoven JM, Schuijf JD, Gaemperli O et al (2009) Prognostic value of multislice computed tomography and gated single-photon emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol 53:623–632

    Article  PubMed  Google Scholar 

  29. Rudd JH, Warburton EA, Fryer TD et al (2002) Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 105:2708–2711

    Article  PubMed  CAS  Google Scholar 

  30. Wykrzykowska J, Lehman S, Williams G et al (2009) Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med 50:563–568

    Article  PubMed  Google Scholar 

  31. Schäfers M, Dutka D, Rhodes CG et al (1998) Myocardial presynaptic and postsynaptic autonomic dysfunction in hypertrophic cardiomyopathy. Circ Res 82:57–62

    Article  PubMed  Google Scholar 

  32. Hundt W, Siebert K, Wintersperger BJ et al (2005) Assessment of global left ventricular function: comparison of cardiac multidetector-row computed tomography with angiocardiography. J Comput Assist Tomogr 29:373–381

    Article  PubMed  Google Scholar 

  33. Makowski MR, Ebersberger U, Nekolla S, Schwaiger M (2008) In vivo molecular imaging of angiogenesis, targeting alphabeta3 integrin expression, in a patient after acute myocardial infarction. Eur Heart J 29:2201

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Italia

About this chapter

Cite this chapter

Schwaiger, M., Ziegler, S.I., Nekolla, S.G. (2011). PET Imaging in Cardiovascular Disease. In: Hodler, J., von Schulthess, G.K., Zollikofer, C.L. (eds) Diseases of the Heart and Chest, Including Breast 2011–2014. Springer, Milano. https://doi.org/10.1007/978-88-470-1938-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1938-6_32

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1937-9

  • Online ISBN: 978-88-470-1938-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics