Skip to main content

Abstract

Cardiovascular magnetic resonance (CMR) creates images from atomic nuclei with uneven spin using radio waves in the presence of a magnetic field. Full details of the physical principles can be found elsewhere [1]. For clinical purposes, MR is performed using hydrogen-1, which is abundant in water and fat. Radiofrequency waves excite the area of interest to create tissue magnetization, which decays (relaxation) and after a short period is induced to release energy as a radio signal. These echoes are converted using Fourier transformation into images of spatially resolved radio signals. Relaxation is quantified in spatially orthogonal directions as T1 and T2, which allows tissue characterization, thus creating a powerful clinical tool. A CMR scanner consists of a superconducting magnet, a radiofrequency transmitter and receiver connected to radio aerials, and gradient coils driven by powerful pulses of electricity to create transient magnetic fields. The imaging computer triggers to the electrocardiogram and runs scanning sequences that coordinate the complex processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manning WJ, Pennell DJ (2010) Cardiovascular magnetic resonance, 2nd edn. Saunders, Philadelphia, PA

    Google Scholar 

  2. Kim RJ, de Roos A, Fleck E et al (2007) Society for Cardiovascular Magnetic Resonance (SCMR) Clinical Practice Committee. Guidelines for training in cardiovascular magnetic resonance (CMR). J Cardiovasc Magn Reson 9:3–4

    Article  PubMed  Google Scholar 

  3. Hendel RC, Patel MR, Kramer CM et al (2006) ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 48:1475–1497

    Article  PubMed  Google Scholar 

  4. Pohost GM, Kim RJ, Kramer CM, Manning WJ for the Society for Cardiovascular Magnetic Resonance (2008) Task Force 12: training in advanced cardiovascular imaging (cardiovascular magnetic resonance [CMR]): endorsed by the Society for Cardiovascular Magnetic Resonance. J Am Coll Cardiol 51:404–408

    Article  PubMed  Google Scholar 

  5. Kramer CM, Budoff MJ, Fayad ZA et al (2007) ACCF/AHA 2007 clinical competence statement on vascular imaging with computed tomography and magnetic resonance: a report of the American College of Cardiology Foundation/American Heart Association/American College of Physicians Task Force on Clinical Competence and Training: developed in collaboration with the Society of Atherosclerosis Imaging and Prevention, the Society for Cardiovascular Angiography and Interventions, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society for Vascular Medicine and Biology. Circulation 116:1318–1335

    Article  PubMed  Google Scholar 

  6. Kramer CM, Barkhausen J, Flamm SD et al (2008) Standardized cardiovascular magnetic resonance imaging (CMR) protocols, society for cardiovascular magnetic resonance: board of trustees task force on standardized protocols. J Cardiovasc Magn Reson 10:35

    Article  PubMed  Google Scholar 

  7. Hundley WG, Bluemke D, Bogaert JG et al (2009) Society for Cardiovascular Magnetic Resonance guidelines for reporting cardiovascular magnetic resonance examinations. J Cardiovasc Magn Reson 11:5

    Article  PubMed  Google Scholar 

  8. Maceira AM, Prasad SK, Khan M, Pennell DJ (2006) Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 8:417–426

    Article  PubMed  CAS  Google Scholar 

  9. Maceira AM, Prasad SK, Khan M, Pennell DJ (2006) Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance. Eur Heart J 27:2879–2888

    Article  PubMed  Google Scholar 

  10. Grothues F, Smith GC, Moon JC et al (2002) Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 90:29–34

    Article  PubMed  Google Scholar 

  11. Grothues F, Moon JCC, Bellenger NG et al (2004) Interstudy reproducibility of right ventricular volumes, function and mass with cardiovascular magnetic resonance. Am Heart J 147:218–223

    Article  PubMed  Google Scholar 

  12. John AS, Dill T, Brandt RR et al (2003) Magnetic resonance to assess the aortic valve area in aortic stenosis: how does it compare to current diagnostic standards? J Am Coll Cardiol 42:519–526

    Article  PubMed  Google Scholar 

  13. Prasad SK, Soukias N, Hornung T et al (2004) Role of magnetic resonance angiography in the diagnosis of major aortopulmonary collateral arteries and partial anomalous pulmonary venous drainage. Circulation 109:207–214

    Article  PubMed  Google Scholar 

  14. Babu-Narayan SV, Kilner PJ, Li W et al (2006) Ventricular fibrosis suggested by cardiovascular magnetic resonance in adults with repaired tetralogy of Fallot and its relationship to adverse markers of clinical outcome. Circulation 113:405–413

    Article  PubMed  CAS  Google Scholar 

  15. Frigiola A, Tsang V, Bull C et al (2008) Biventricular response after pulmonary valve replacement for right ventricular outflow tract dysfunction: is age a predictor of outcome? Circulation 118(14 Suppl):S182–S190

    Article  PubMed  Google Scholar 

  16. Gerber BL, Raman SV, Nayak K et al (2008) Myocardial first-pass perfusion cardiovascular magnetic resonance: history, theory, and current state of the art. J Cardiovasc Magn Reson 10:18

    Article  PubMed  Google Scholar 

  17. Fieno DS, Shea SM, Li Y et al (2004) Myocardial perfusion imaging based on the blood oxygen level-dependent effect using T2-prepared steady-state free-precession magnetic resonance imaging. Circulation 110:1284–1290

    Article  PubMed  Google Scholar 

  18. Nagel E, Lehmkuhl HB, Bocksch W et al (1999) Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography. Circulation 99:763–770

    Article  PubMed  CAS  Google Scholar 

  19. Kim RJ, Albert TS, Wible JH et al, for the Gadoversetamide Myocardial Infarction Imaging Investigators (2008). Performance of delayed-enhancement magnetic resonance imaging with gadoversetamide contrast for the detection and assessment of myocardial infarction: an international, multicenter, double-blinded, randomized trial. Circulation 117:629–637

    Article  PubMed  Google Scholar 

  20. Wagner A, Mahrholdt H, Holly TA et al (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361:374–379

    Article  PubMed  Google Scholar 

  21. Kim RJ, Wu E, Rafael A et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453

    Article  PubMed  CAS  Google Scholar 

  22. Assomull RG, Prasad SK, Lyne J et al (2006) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 48:1977–1985

    Article  PubMed  Google Scholar 

  23. Maceira AM, Joshi J, Prasad SK et al (2005) Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 111:186–193

    Article  PubMed  Google Scholar 

  24. Kirk P, Roughton M, Porter JB et al (2009) Cardiac T2* magnetic resonance for prediction of cardiac complications in thalassemia major. Circulation 120:1961–1968.

    Article  PubMed  CAS  Google Scholar 

  25. Mahrholdt H, Goedecke C, Wagner A, Meinhardt G et al (2004) Cardiovascular magnetic resonance assessment of human myocarditis: a comparison to histology and molecular pathology. Circulation 109:1250–1258.

    Article  PubMed  Google Scholar 

  26. Johnson KR, Patel SJ, Whigham A et al (2004) Three-dimensional, time-resolved motion of the coronary arteries. J Cardiovasc Magn Reson 6:663–673

    Article  PubMed  Google Scholar 

  27. Rosito GA, Massaro JM, Hoffmann U et al (2008) Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation 117:605–613

    Article  PubMed  Google Scholar 

  28. Sirol M, Itskovich VV, Mani V et al (2004) Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation 109:2890–2896

    Article  PubMed  CAS  Google Scholar 

  29. Nguyen PK, Meyer C, Engvall J et al (2008) Noninvasive assessment of coronary vasodilation using cardiovascular magnetic resonance in patients at high risk for coronary artery disease. J Cardiovasc Magn Reson 10:28

    Article  PubMed  Google Scholar 

  30. Bello D, Fieno DS, Kim RJ et al (2005) Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. J Am Coll Cardiol 45:1104–1108

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Italia

About this chapter

Cite this chapter

Pennell, D.J. (2011). Cardiovascular Magnetic Resonance. In: Hodler, J., von Schulthess, G.K., Zollikofer, C.L. (eds) Diseases of the Heart and Chest, Including Breast 2011–2014. Springer, Milano. https://doi.org/10.1007/978-88-470-1938-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1938-6_23

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1937-9

  • Online ISBN: 978-88-470-1938-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics