The role of the variational formulation in the dimensionally-heterogeneous modelling of the human cardiovascular system

Part of the MS&A — Modeling, Simulation and Applications book series (MS&A, volume 5)


The modelling of the cardiovascular system entails dealing with different phenomena pertaining to different time, constitutive and geometrical scales. Specifically, the problem of integrating various geometrical scales can be understood from a kinematical point of view, which means to integrate models with different kinematics, and in particular different dimensionality. In this context, all the variational machinery can be employed to derive consistent variational formulations according to the underlying kinematical hypotheses that rule over the corresponding models. In this work we discuss the application of variational formulations to model the blood flow in the cardiovascular system making use of heterogeneous representations. Two examples of applications are used to show the capabilities and potentialities of the present approach.


Variational Formulation Arterial Segment Natural Boundary Condition Arterial Network Coupling Interface 



This work was partially supported by the Brazilian agencies CNPq and FAPERJ. The support of these agencies is gratefully acknowledged.


  1. 1.
    Avolio A.P.: Multi-branched model of the human arterial system. Med. Biol. Engrg. Comp. 18(6): 709–718, 1980.CrossRefGoogle Scholar
  2. 2.
    Bernardi C., Dauge M., Maday Y.: Spectral Methods for Axisymmetric Domains, volume Series in Applied Mathematics 3. Gauthier-Villars, Editions Scientifiques et Medicales Elsevier, Paris, 1999.Google Scholar
  3. 3.
    Blanco P.J.: Kinematical incompatibility, immersed domains and multiscale constitutive modeling: Nexus with the modeling of the cardiovascular system (in portuguese). Ph.D. thesis, Laboratorio Nacional de Computacao Cientlfica, Petropolis, Brasil, 2008.Google Scholar
  4. 4.
    Blanco P.J., Feijóo R.A.: Sensitivity analysis in kinematically incompatible models. Computer Methods in Applied Mechanics and Engineering 198(41–44): 3287–3298, 2009.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Blanco P.J., Discacciati M., Quarteroni A.: Modeling dimensionally-heterogeneous problems: Analysis, approximation and applications. Submitted to Numer. Math., 2010.Google Scholar
  6. 6.
    Blanco P.J., Feijóo R.A., Urquiza S.A.: A unified variational approach for coupling 3D-1D models and its blood flow applications. Comp. Meth. Appl. Mech. Engrg. 196(41–44): 4391–4410, 2007.MATHCrossRefGoogle Scholar
  7. 7.
    Blanco P.J., Feijóo R.A., Urquiza S.A.: A variational approach for coupling kinematically incompatible structural models. Comp. Meth. Appl. Mech. Engrg. 197(17–18): 1577–1602, 2008.MATHCrossRefGoogle Scholar
  8. 8.
    Blanco P.J., Urquiza S.A., Feijóo R.A.: Assessing the influence of heart rate in local hemo-dynamics through coupled 3D-1D-0D models. International Journal for Numerical Methods in Biomedical Engineering 26(7): 890-903, 2010.MATHGoogle Scholar
  9. 9.
    Blanco P.J., Pivello M.R., Urquiza, S.A., Feijóo R.A.: On the potentialities of 3D-1D coupled models in hemodynamics simulations. Journal of Biomechanics 42(7): 919–930, 2009.CrossRefGoogle Scholar
  10. 10.
    Blanco P.J., Leiva J.S., Buscaglia G.C.: Black-box decomposition approach for computational hemodynamics: One-dimensional models. Comp. Meth. Appl. Mech. Engrg. 200(13–16): 1389–1405, 2011.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York, 1991.MATHCrossRefGoogle Scholar
  12. 12.
    Caro C.G., Fitz-Gerald J.M., Schroter R.C.: Atheroma and arterial wall shear dependent mass transfer mechanism for atherogenesis. Proc. Roy. Soc. London Biol. B177: 109–159, 1971.CrossRefGoogle Scholar
  13. 13.
    Cebral J., Castro M., Appanaboyina S., Putman C., Millan D., Frangi A.: Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: Technique and sensitivity. IEEE Trans. Med. Imaging 24: 457–467, 2005.CrossRefGoogle Scholar
  14. 14.
    Cebral J.R., Sheridan M., Putman C.M.: Hemodynamics and bleb formation in intracranial aneurysms. American Journal of Neuroradiology 31: 304–310, 2010.CrossRefGoogle Scholar
  15. 15.
    Dhar S., Tremmel M., Mocco J., Kim M., Yamamoto J., Siddiqui A.H., Hopkins L.N., Meng H.: Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery 63: 185–197, 2008.CrossRefGoogle Scholar
  16. 16.
    Fernández M.A., Milisic V., Quarteroni A.: Analisys of a geometrical multiscale blood flow model based on the coupling of ODEs and hyperbolic PDEs. SIAM J. on Multiscale Model Simul. 4(1): 215–236, 2005.MATHCrossRefGoogle Scholar
  17. 17.
    Formaggia L., Nobile F., Quarteroni A., Veneziani A.: Multiscale modelling of the vascular system: A preliminary analysis. Comp. Vis. Sci. 2: 75–84, 1999.MATHCrossRefGoogle Scholar
  18. 18.
    Formaggia L., Gerbeau J.F., Nobile F., Quarteroni A.: On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels, Comput. Methods Appl. Mech. Engrg. 191(6–7): 561–582, 2001.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Formaggia L., Gerbeau J.F. Nobile F., Quarteroni A.: Numerical treatment of defective boundary conditions forthe Navier-Stokes equations. SIAM J. Numer. Anal. 40(1): 376–401, 2002.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Giddens D.P., Zarins C.K., Glagov S.: The role of fluid mechanics in the localization and detection of atherosclerosis. J. Biomech. Engrg. 115: 588–594, (1993).CrossRefGoogle Scholar
  21. 21.
    Grinberg L., Anor T., Madsen J., Yakhot A., Karniadakis G.: Large-scale simulation of the human arterial tree. Clinical and Experimental Pharmacology and Physiology 36: 194–205, 2009.CrossRefGoogle Scholar
  22. 22.
    Heldt T., Shim E., Kamm R., Mark R.: Computational modeling of cardiovascular response to orthostatic stress. J. Appl. Physiol. 92: 1239–1254, 2002.Google Scholar
  23. 23.
    Heywood J.G., Rannacher R., Turek S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier Stokes equations. Int. J. Numer. Methods Fluids 22: 325–352, 1996.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Hoppensteadt F., Peskin C.: Modeling and Simulation in Medicine and the Life Sciences. Texts in Applied Mathematics, Springer, 2002.MATHCrossRefGoogle Scholar
  25. 25.
    Hughes T.J.R., Lubliner J.: On the one-dimensional theory of blood flow in the larger vessels. Math. Biosci. 18(1–2): 161–170, 1973.MATHCrossRefGoogle Scholar
  26. 26.
    Keynton R.S., Evancho M.M., Sims R.L., Rodway N.V., Gobin A., Rittgers S.E.: Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study. J. Biomech. Engng. 123: 464–473, 2001.CrossRefGoogle Scholar
  27. 27.
    Kim H.J., Figueroa C.A., Hughes T.J.R., Jansen K.E., Taylor C.A.: Augmented lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow. Comp. Meth. Appl. Mech. Engrg. 198(45–46): 3551–3566, 2009.MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Kim H.J., Vignon-Clementel I.E., Figueroa C.A., LaDisa J.F., Jansen K.E., Feinstein J.A., Taylor C.A.: On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann. Biomed. Engng. 37(11): 2153–2169, 2009.CrossRefGoogle Scholar
  29. 29.
    Kivity Y., Collins R.: Nonlinear fluid-shell interactions: application to blood flow in large arteries. In: Proceedings of the International Symposium on Discrete Methods Engineering: 476–488, 1974.Google Scholar
  30. 30.
    Kivity Y., Collins R.: Nonlinear wave propagation in viscoelastic tubes: application to aortic rupture. J. Biomech. 7(1): 67–76, 1974.CrossRefGoogle Scholar
  31. 31.
    Korakianitis T., Shi Y.: Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. J. Biomech. 39(11): 1964–1982, 2006.CrossRefGoogle Scholar
  32. 32.
    Ku D.N., Giddens D.P., Zarins C.K., Glagov S.: Pulsatile flow and atherosclerosis in the human carotid bifurcation. Arteriosclerosis 5(3): 293–302, 1985.CrossRefGoogle Scholar
  33. 33.
    Kufahl R.H., Clark M.E.: A circle of willis simulation using distensible vessels and pulsatile flow. J. Biomech. Engrg. 107(2): 112–122, 1985.CrossRefGoogle Scholar
  34. 34.
    Laganà K., Dubini G., Migliavacca F., Pietrabissa R., Pennati G., Veneziani A., Quarteroni A.: Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 39(3–4): 359–364, 2002.Google Scholar
  35. 35.
    Lanzarone E., Liani P., Baselli G., Costantino M.L.: Model of arterial tree and peripheral control for the study of physiological and assisted circulation. Medical Engineering and Physics 29(5): 542–555, 2007.CrossRefGoogle Scholar
  36. 36.
    Leiva J.S., Blanco P.J., Buscaglia G.C.: Iterative strong coupling of dimensionally-heterogeneous models. Int. J. Num. Meth. Engrg. 81: 1558–1580, (2010).MathSciNetMATHGoogle Scholar
  37. 37.
    Li X.M., Rittgers S.E.: Hemodynamic factors at the distal end-to-side anastomosis of a bypass graft with different POS:DOS flow ratios. J. Biomech. Engng. 123: 270–276, (2001).CrossRefGoogle Scholar
  38. 38.
    Liang F., Liu H.: A closed-loop lumped parameter computational model for human cardiovascular system. JSME International Journal Series C 48(4): 484–493, 2005.CrossRefGoogle Scholar
  39. 39.
    Liang F., Liu H.: Simulation of hemodynamic responses to the valsalva maneuver: An integrative computational model of the cardiovascular system and the autonomic nervous system. J. Physiol. Sci. 56(1): 45–65, 2006.MathSciNetCrossRefGoogle Scholar
  40. 40.
    Liang F., Takagi S., Himeno R., Liu H.: Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses. Med. Biol. Eng. Comput. 47: 743–755, 2009.CrossRefGoogle Scholar
  41. 41.
    Löhner R., Cebral J., Soto O., Yim P., Burgess, J.E.: Applications of patient-specific CFD in medicine and life sciences, Int. J. Numer. Meth. Fluids 43(6–7): 637–650, 2003.MATHCrossRefGoogle Scholar
  42. 42.
    Murphy J.B., Boyle F.J.: A numerical methodology to fully elucidate the altered wall shear stress in a stented coronary artery. Cardiovascular Engineering and Technology, 1: 256–268 2010.CrossRefGoogle Scholar
  43. 43.
    Migliavacca F., Balossino R., Pennati G., Dubini G., Hsia T-Y., de Leval M.R., Bove E.L.: Multiscale modelling in biofluidynamics: Application to reconstructive paediatric cardiac surgery. J. Biomech. 39(6): 1010–1020, 2006.CrossRefGoogle Scholar
  44. 44.
    Oden J.T.: Applied Functional Analysis. Prentice-Hall, New Jersey, 1979.MATHGoogle Scholar
  45. 45.
    Olufsen M.S., Ottesen J.T., Tran H.T., Ellwein L.M., Lipsitz L.A., Novak V.: Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation. J. Appl. Physiol. 99(4): 1523–1537, 2005.CrossRefGoogle Scholar
  46. 46.
    Olufsen, M.S., Peskin, C.S., Kim, W.Y., Pedersen, E.M., Nadim, A., Larsen, J.: Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Engng. 28(11): 1281–1299, 2000.CrossRefGoogle Scholar
  47. 47.
    Oshima, M., Torii, R., Kobayashi, T., Taniguchi, N., Takagi, K.: Finite element simulation of blood flow in the cerebral artery. Comput. Methods Appl. Mech. Engrg. 191(6–7): 661–671, 2001.MATHCrossRefGoogle Scholar
  48. 48.
    Perktold K., Rappitsch G.: Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28(7): 845–856, 1995.CrossRefGoogle Scholar
  49. 49.
    Pontrelli G.: A multiscale approach for modelling wave propagation in an arterial segment. Comp. Meth. Biomech. Biom. Engrg. 7(2): 79–89, 2004.CrossRefGoogle Scholar
  50. 50.
    Quarteroni A., Veneziani A.: Analysis of a geometrical multiscale model based on the coupling of ODEs and PDEs for blood flow simulations. SIAM J. on Multiscale Model. Simul. 1(2): 173–195, 2003.MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Quarteroni A., Tuveri M., Veneziani A.: Computational vascular fluid dynamics: problems, models and methods. Computing and Visualization in Science 2(4): 163–197, 2000.MATHCrossRefGoogle Scholar
  52. 52.
    Reichold J., Stampanoni M., Lena Keller A., Buck A., Jenny P., Weber B.: Vascular graph model to simulate the cerebral blood flow in realistic vascular networks. J. Cereb. Blood Flow Metab. 29(8): 1429–1443, 2009.CrossRefGoogle Scholar
  53. 53.
    Reymond P., Merenda F., Perren F., Rufenacht D., Stergiopulos N.: Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 297(1): H208–H222, 2009.CrossRefGoogle Scholar
  54. 54.
    Schaaf B.W., Abbrecht P.H.: Digital computer simulation of human systemic arterial pulse wave transmission: A nonlinear model. J. Biomech. 5(4): 345–364, 1972.CrossRefGoogle Scholar
  55. 55.
    Spencer M.P., Deninson A.B.: The square-wave electro-magnetic flowmeter. Theory of operation and design of magnetic probes for clinical and experimental applications. I.R.E. Trans. Med. Elect. 6: 220–228, 1959.Google Scholar
  56. 56.
    Stergiopulos N., Young D.F., Rogge T.R.: Computer simulation of arterial flow with applications to arterial and aortic stenoses. J. Biomech. 25(12): 1477–1488, 1992.CrossRefGoogle Scholar
  57. 57.
    Stettler, J.C., Niederer, P., Anliker, M.: Theoretical analysis of arterial hemodynamics including the influence of bifurcations. Part I: mathematical models and prediction of normal pulse patterns. Ann. Biomed. Engrg. 9(2): 145–164, (1981).Google Scholar
  58. 58.
    Strang G., Fix G.J.: An Analysis of the Finite Element Method. Prentice-Hall, New York, 1973.MATHGoogle Scholar
  59. 59.
    Taylor C.A., Hughes T.J.R., Zarins C.K.: Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Ann. Biomed. Engrg. 26(6): 975–987, 1998.CrossRefGoogle Scholar
  60. 60.
    Urquiza S.A., Blanco P.J., Vénere M.J., Feijóo R.A.: Multidimensional modelling for the carotid artery blood flow. Comput. Methods Appl. Mech. Engrg. 195(33–36): 4002–4017, 2006.MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    van Heusden K., Gisolf J., Stok W.J., Dijkstra S., Karemaker J.M.: Mathematical modeling of gravitational effects on the circulation: importance of the time course of venous pooling and blood volume changes in the lungs. Am J. Physiol. Heart Circ. Physiol. 291(5), H2152–H2165, 2006.CrossRefGoogle Scholar
  62. 62.
    Vignon-Clementel I.E., Figueroa C.A., Jansen K.E., Taylor C.A.: Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Engrg. 195(29–32): 3776–3796, 2006.MathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Vignon-Clementel I.E., Figueroa C.A., Jansen K.E., Taylor C.A.: Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput. Methods Biomech. Biomed. Engrg. 13: 625–640, 2010.CrossRefGoogle Scholar
  64. 64.
    Wang J.J., Parker K.H.: Wave propagation in a model of the arterial circulation. J. Biomech. 37(4): 457–470, 2004.CrossRefGoogle Scholar
  65. 65.
    Xiang J., Natarajan S.K., Tremmel M., Ma D., Mocco J., Hopkins L.N., Siddiqui A.H., Levy E.I., Meng H.: Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42: 144–152, 2011.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  1. 1.LNCC — National Laboratory for Scientific Computing and INCT-MACC — National Institute of Science and Technology in Medicine Assisted by Scientific ComputingPetrópolisBrazil

Personalised recommendations