Skip to main content

The role of the variational formulation in the dimensionally-heterogeneous modelling of the human cardiovascular system

  • Chapter
Modeling of Physiological Flows

Part of the book series: MS&A — Modeling, Simulation and Applications ((MS&A,volume 5))

Abstract

The modelling of the cardiovascular system entails dealing with different phenomena pertaining to different time, constitutive and geometrical scales. Specifically, the problem of integrating various geometrical scales can be understood from a kinematical point of view, which means to integrate models with different kinematics, and in particular different dimensionality. In this context, all the variational machinery can be employed to derive consistent variational formulations according to the underlying kinematical hypotheses that rule over the corresponding models. In this work we discuss the application of variational formulations to model the blood flow in the cardiovascular system making use of heterogeneous representations. Two examples of applications are used to show the capabilities and potentialities of the present approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avolio A.P.: Multi-branched model of the human arterial system. Med. Biol. Engrg. Comp. 18(6): 709–718, 1980.

    Article  Google Scholar 

  2. Bernardi C., Dauge M., Maday Y.: Spectral Methods for Axisymmetric Domains, volume Series in Applied Mathematics 3. Gauthier-Villars, Editions Scientifiques et Medicales Elsevier, Paris, 1999.

    Google Scholar 

  3. Blanco P.J.: Kinematical incompatibility, immersed domains and multiscale constitutive modeling: Nexus with the modeling of the cardiovascular system (in portuguese). Ph.D. thesis, Laboratorio Nacional de Computacao Cientlfica, Petropolis, Brasil, 2008.

    Google Scholar 

  4. Blanco P.J., Feijóo R.A.: Sensitivity analysis in kinematically incompatible models. Computer Methods in Applied Mechanics and Engineering 198(41–44): 3287–3298, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  5. Blanco P.J., Discacciati M., Quarteroni A.: Modeling dimensionally-heterogeneous problems: Analysis, approximation and applications. Submitted to Numer. Math., 2010.

    Google Scholar 

  6. Blanco P.J., Feijóo R.A., Urquiza S.A.: A unified variational approach for coupling 3D-1D models and its blood flow applications. Comp. Meth. Appl. Mech. Engrg. 196(41–44): 4391–4410, 2007.

    Article  MATH  Google Scholar 

  7. Blanco P.J., Feijóo R.A., Urquiza S.A.: A variational approach for coupling kinematically incompatible structural models. Comp. Meth. Appl. Mech. Engrg. 197(17–18): 1577–1602, 2008.

    Article  MATH  Google Scholar 

  8. Blanco P.J., Urquiza S.A., Feijóo R.A.: Assessing the influence of heart rate in local hemo-dynamics through coupled 3D-1D-0D models. International Journal for Numerical Methods in Biomedical Engineering 26(7): 890-903, 2010.

    MATH  Google Scholar 

  9. Blanco P.J., Pivello M.R., Urquiza, S.A., Feijóo R.A.: On the potentialities of 3D-1D coupled models in hemodynamics simulations. Journal of Biomechanics 42(7): 919–930, 2009.

    Article  Google Scholar 

  10. Blanco P.J., Leiva J.S., Buscaglia G.C.: Black-box decomposition approach for computational hemodynamics: One-dimensional models. Comp. Meth. Appl. Mech. Engrg. 200(13–16): 1389–1405, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  11. Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York, 1991.

    Book  MATH  Google Scholar 

  12. Caro C.G., Fitz-Gerald J.M., Schroter R.C.: Atheroma and arterial wall shear dependent mass transfer mechanism for atherogenesis. Proc. Roy. Soc. London Biol. B177: 109–159, 1971.

    Article  Google Scholar 

  13. Cebral J., Castro M., Appanaboyina S., Putman C., Millan D., Frangi A.: Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: Technique and sensitivity. IEEE Trans. Med. Imaging 24: 457–467, 2005.

    Article  Google Scholar 

  14. Cebral J.R., Sheridan M., Putman C.M.: Hemodynamics and bleb formation in intracranial aneurysms. American Journal of Neuroradiology 31: 304–310, 2010.

    Article  Google Scholar 

  15. Dhar S., Tremmel M., Mocco J., Kim M., Yamamoto J., Siddiqui A.H., Hopkins L.N., Meng H.: Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery 63: 185–197, 2008.

    Article  Google Scholar 

  16. Fernández M.A., Milisic V., Quarteroni A.: Analisys of a geometrical multiscale blood flow model based on the coupling of ODEs and hyperbolic PDEs. SIAM J. on Multiscale Model Simul. 4(1): 215–236, 2005.

    Article  MATH  Google Scholar 

  17. Formaggia L., Nobile F., Quarteroni A., Veneziani A.: Multiscale modelling of the vascular system: A preliminary analysis. Comp. Vis. Sci. 2: 75–84, 1999.

    Article  MATH  Google Scholar 

  18. Formaggia L., Gerbeau J.F., Nobile F., Quarteroni A.: On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels, Comput. Methods Appl. Mech. Engrg. 191(6–7): 561–582, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  19. Formaggia L., Gerbeau J.F. Nobile F., Quarteroni A.: Numerical treatment of defective boundary conditions forthe Navier-Stokes equations. SIAM J. Numer. Anal. 40(1): 376–401, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  20. Giddens D.P., Zarins C.K., Glagov S.: The role of fluid mechanics in the localization and detection of atherosclerosis. J. Biomech. Engrg. 115: 588–594, (1993).

    Article  Google Scholar 

  21. Grinberg L., Anor T., Madsen J., Yakhot A., Karniadakis G.: Large-scale simulation of the human arterial tree. Clinical and Experimental Pharmacology and Physiology 36: 194–205, 2009.

    Article  Google Scholar 

  22. Heldt T., Shim E., Kamm R., Mark R.: Computational modeling of cardiovascular response to orthostatic stress. J. Appl. Physiol. 92: 1239–1254, 2002.

    Google Scholar 

  23. Heywood J.G., Rannacher R., Turek S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier Stokes equations. Int. J. Numer. Methods Fluids 22: 325–352, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  24. Hoppensteadt F., Peskin C.: Modeling and Simulation in Medicine and the Life Sciences. Texts in Applied Mathematics, Springer, 2002.

    Book  MATH  Google Scholar 

  25. Hughes T.J.R., Lubliner J.: On the one-dimensional theory of blood flow in the larger vessels. Math. Biosci. 18(1–2): 161–170, 1973.

    Article  MATH  Google Scholar 

  26. Keynton R.S., Evancho M.M., Sims R.L., Rodway N.V., Gobin A., Rittgers S.E.: Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study. J. Biomech. Engng. 123: 464–473, 2001.

    Article  Google Scholar 

  27. Kim H.J., Figueroa C.A., Hughes T.J.R., Jansen K.E., Taylor C.A.: Augmented lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow. Comp. Meth. Appl. Mech. Engrg. 198(45–46): 3551–3566, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  28. Kim H.J., Vignon-Clementel I.E., Figueroa C.A., LaDisa J.F., Jansen K.E., Feinstein J.A., Taylor C.A.: On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann. Biomed. Engng. 37(11): 2153–2169, 2009.

    Article  Google Scholar 

  29. Kivity Y., Collins R.: Nonlinear fluid-shell interactions: application to blood flow in large arteries. In: Proceedings of the International Symposium on Discrete Methods Engineering: 476–488, 1974.

    Google Scholar 

  30. Kivity Y., Collins R.: Nonlinear wave propagation in viscoelastic tubes: application to aortic rupture. J. Biomech. 7(1): 67–76, 1974.

    Article  Google Scholar 

  31. Korakianitis T., Shi Y.: Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. J. Biomech. 39(11): 1964–1982, 2006.

    Article  Google Scholar 

  32. Ku D.N., Giddens D.P., Zarins C.K., Glagov S.: Pulsatile flow and atherosclerosis in the human carotid bifurcation. Arteriosclerosis 5(3): 293–302, 1985.

    Article  Google Scholar 

  33. Kufahl R.H., Clark M.E.: A circle of willis simulation using distensible vessels and pulsatile flow. J. Biomech. Engrg. 107(2): 112–122, 1985.

    Article  Google Scholar 

  34. Laganà K., Dubini G., Migliavacca F., Pietrabissa R., Pennati G., Veneziani A., Quarteroni A.: Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. Biorheology 39(3–4): 359–364, 2002.

    Google Scholar 

  35. Lanzarone E., Liani P., Baselli G., Costantino M.L.: Model of arterial tree and peripheral control for the study of physiological and assisted circulation. Medical Engineering and Physics 29(5): 542–555, 2007.

    Article  Google Scholar 

  36. Leiva J.S., Blanco P.J., Buscaglia G.C.: Iterative strong coupling of dimensionally-heterogeneous models. Int. J. Num. Meth. Engrg. 81: 1558–1580, (2010).

    MathSciNet  MATH  Google Scholar 

  37. Li X.M., Rittgers S.E.: Hemodynamic factors at the distal end-to-side anastomosis of a bypass graft with different POS:DOS flow ratios. J. Biomech. Engng. 123: 270–276, (2001).

    Article  Google Scholar 

  38. Liang F., Liu H.: A closed-loop lumped parameter computational model for human cardiovascular system. JSME International Journal Series C 48(4): 484–493, 2005.

    Article  Google Scholar 

  39. Liang F., Liu H.: Simulation of hemodynamic responses to the valsalva maneuver: An integrative computational model of the cardiovascular system and the autonomic nervous system. J. Physiol. Sci. 56(1): 45–65, 2006.

    Article  MathSciNet  Google Scholar 

  40. Liang F., Takagi S., Himeno R., Liu H.: Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses. Med. Biol. Eng. Comput. 47: 743–755, 2009.

    Article  Google Scholar 

  41. Löhner R., Cebral J., Soto O., Yim P., Burgess, J.E.: Applications of patient-specific CFD in medicine and life sciences, Int. J. Numer. Meth. Fluids 43(6–7): 637–650, 2003.

    Article  MATH  Google Scholar 

  42. Murphy J.B., Boyle F.J.: A numerical methodology to fully elucidate the altered wall shear stress in a stented coronary artery. Cardiovascular Engineering and Technology, 1: 256–268 2010.

    Article  Google Scholar 

  43. Migliavacca F., Balossino R., Pennati G., Dubini G., Hsia T-Y., de Leval M.R., Bove E.L.: Multiscale modelling in biofluidynamics: Application to reconstructive paediatric cardiac surgery. J. Biomech. 39(6): 1010–1020, 2006.

    Article  Google Scholar 

  44. Oden J.T.: Applied Functional Analysis. Prentice-Hall, New Jersey, 1979.

    MATH  Google Scholar 

  45. Olufsen M.S., Ottesen J.T., Tran H.T., Ellwein L.M., Lipsitz L.A., Novak V.: Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation. J. Appl. Physiol. 99(4): 1523–1537, 2005.

    Article  Google Scholar 

  46. Olufsen, M.S., Peskin, C.S., Kim, W.Y., Pedersen, E.M., Nadim, A., Larsen, J.: Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Engng. 28(11): 1281–1299, 2000.

    Article  Google Scholar 

  47. Oshima, M., Torii, R., Kobayashi, T., Taniguchi, N., Takagi, K.: Finite element simulation of blood flow in the cerebral artery. Comput. Methods Appl. Mech. Engrg. 191(6–7): 661–671, 2001.

    Article  MATH  Google Scholar 

  48. Perktold K., Rappitsch G.: Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28(7): 845–856, 1995.

    Article  Google Scholar 

  49. Pontrelli G.: A multiscale approach for modelling wave propagation in an arterial segment. Comp. Meth. Biomech. Biom. Engrg. 7(2): 79–89, 2004.

    Article  Google Scholar 

  50. Quarteroni A., Veneziani A.: Analysis of a geometrical multiscale model based on the coupling of ODEs and PDEs for blood flow simulations. SIAM J. on Multiscale Model. Simul. 1(2): 173–195, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  51. Quarteroni A., Tuveri M., Veneziani A.: Computational vascular fluid dynamics: problems, models and methods. Computing and Visualization in Science 2(4): 163–197, 2000.

    Article  MATH  Google Scholar 

  52. Reichold J., Stampanoni M., Lena Keller A., Buck A., Jenny P., Weber B.: Vascular graph model to simulate the cerebral blood flow in realistic vascular networks. J. Cereb. Blood Flow Metab. 29(8): 1429–1443, 2009.

    Article  Google Scholar 

  53. Reymond P., Merenda F., Perren F., Rufenacht D., Stergiopulos N.: Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 297(1): H208–H222, 2009.

    Article  Google Scholar 

  54. Schaaf B.W., Abbrecht P.H.: Digital computer simulation of human systemic arterial pulse wave transmission: A nonlinear model. J. Biomech. 5(4): 345–364, 1972.

    Article  Google Scholar 

  55. Spencer M.P., Deninson A.B.: The square-wave electro-magnetic flowmeter. Theory of operation and design of magnetic probes for clinical and experimental applications. I.R.E. Trans. Med. Elect. 6: 220–228, 1959.

    Google Scholar 

  56. Stergiopulos N., Young D.F., Rogge T.R.: Computer simulation of arterial flow with applications to arterial and aortic stenoses. J. Biomech. 25(12): 1477–1488, 1992.

    Article  Google Scholar 

  57. Stettler, J.C., Niederer, P., Anliker, M.: Theoretical analysis of arterial hemodynamics including the influence of bifurcations. Part I: mathematical models and prediction of normal pulse patterns. Ann. Biomed. Engrg. 9(2): 145–164, (1981).

    Google Scholar 

  58. Strang G., Fix G.J.: An Analysis of the Finite Element Method. Prentice-Hall, New York, 1973.

    MATH  Google Scholar 

  59. Taylor C.A., Hughes T.J.R., Zarins C.K.: Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Ann. Biomed. Engrg. 26(6): 975–987, 1998.

    Article  Google Scholar 

  60. Urquiza S.A., Blanco P.J., Vénere M.J., Feijóo R.A.: Multidimensional modelling for the carotid artery blood flow. Comput. Methods Appl. Mech. Engrg. 195(33–36): 4002–4017, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  61. van Heusden K., Gisolf J., Stok W.J., Dijkstra S., Karemaker J.M.: Mathematical modeling of gravitational effects on the circulation: importance of the time course of venous pooling and blood volume changes in the lungs. Am J. Physiol. Heart Circ. Physiol. 291(5), H2152–H2165, 2006.

    Article  Google Scholar 

  62. Vignon-Clementel I.E., Figueroa C.A., Jansen K.E., Taylor C.A.: Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Engrg. 195(29–32): 3776–3796, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  63. Vignon-Clementel I.E., Figueroa C.A., Jansen K.E., Taylor C.A.: Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput. Methods Biomech. Biomed. Engrg. 13: 625–640, 2010.

    Article  Google Scholar 

  64. Wang J.J., Parker K.H.: Wave propagation in a model of the arterial circulation. J. Biomech. 37(4): 457–470, 2004.

    Article  Google Scholar 

  65. Xiang J., Natarajan S.K., Tremmel M., Ma D., Mocco J., Hopkins L.N., Siddiqui A.H., Levy E.I., Meng H.: Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42: 144–152, 2011.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Brazilian agencies CNPq and FAPERJ. The support of these agencies is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl A. Feijóo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Blanco, P.J., Feijóo, R.A. (2012). The role of the variational formulation in the dimensionally-heterogeneous modelling of the human cardiovascular system. In: Ambrosi, D., Quarteroni, A., Rozza, G. (eds) Modeling of Physiological Flows. MS&A — Modeling, Simulation and Applications, vol 5. Springer, Milano. https://doi.org/10.1007/978-88-470-1935-5_9

Download citation

Publish with us

Policies and ethics