Advertisement

The VPH-Physiome Project: Standards, tools and databases for multi-scale physiological modelling

  • Peter Hunter
  • Chris Bradley
  • Randall Britten
  • David Brooks
  • Luigi Carotenuto
  • Richard Christie
  • Alejandro Frangi
  • Alan Garny
  • David Ladd
  • Caton Little
  • David Nickerson
  • Poul Nielsen
  • Andrew Miller
  • Xavier Planes
  • Martin Steghoffer
  • Alistair Young
  • Tommy Yu
Part of the MS&A — Modeling, Simulation and Applications book series (MS&A, volume 5)

Abstract

The VPH/Physiome project is developing tools and model databases for computational physiology based on three primary model encoding standards: CellML, SBML and FieldML. For the modelling community these standards are the equivalent of the DICOM standard for the clinical imaging community and it is important that the tools adhere to these standards to ensure that models from different groups can be curated, annotated, reused and combined. This chapter discusses the development and use of the VPH/Physiome standards, tools and databases, and also discusses the minimum information standards and ontology-based metadata standards that are complementary to the markup language standards. Data standards are not as well developed as the model encoding standards (with the DICOM standard for medical image encoding being the outstanding exception) but one new data standard being developed as part of the VPH/Physiome suite is BioSignalML and this is described here also. The PMR2 (Physiome Model Repository 2) database for CellML and FieldML files is also described, together with the Application Programming Interfaces (APIs) that facilitate access to the models from the visualization (cmgui and GIMIAS) or computational (OpenCMISS, OpenCell/OpenCOR and other) software.

Keywords

Markup Language DICOM Standard Model Repository Document Object Model Physiome Project 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The development of standards, tools and databases for the VPH/Physiome project is being funded by many public good funding agencies in Europe (e.g. the EU ICT VPH 2, 4 & 6 calls and particularly the NoE and euHeart projects), the US (the MSM Physiome RFPs) and many other countries including the UK (especially the Wellcome Trust), Japan and New Zealand. The authors thank the many people from many different groups around the globe who have contributed to the infrastructure described here – for details see the websites given for the various software projects described in the document. Funding from the Wellcome Trust for the Heart Physiome Project and the European Union for the VPH Network of Excellence (VPH NoE FP7-ICT2008-223920) and the euHeart project (VPH euHeart FP7-ICT2008-224495) is gratefully acknowledged.

References

  1. 1.
    Aspell M.: Professional Plone Development. Packt Publishing, 2007.Google Scholar
  2. 2.
    Beard D.A.: A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation. PLoS. Comp. Biol. 1(4), 2005.Google Scholar
  3. 3.
    Beard D.A., Britten R., Cooling M.T, Garny A., Halstead M.D.B., Hunter P.J., Lawson J, Lloyd C.M., Marsh J., Miller A., Nickerson D.P., Nielsen P.M.F., Nomura T., Subramanium S., Wimalaratne S.M., Yu T.: CellML metadata: Standards, associated tools and repositories. Philosophical Transactions of the Royal Society A367(1895): 1845–1867, 2009.Google Scholar
  4. 4.
    Bradley C.P., Pullan A.J., Hunter P.J.: Geometric modelling of the human torso using cubic Hermite elements. Annals of Biomedical Engineering 25(1): 96–111, 1997.CrossRefGoogle Scholar
  5. 5.
    Bradley et al.: OpenCMISS: A multi-physics & multi-scale computational infrastructure for the VPH/Physiome project. Progress in Biophysics and Molecular Biology, In press 2011.Google Scholar
  6. 6.
    Carroll J.J., Bizer C., Hayes P., Stickler P.: Named graphs, provenance and trust, In: Proceedings of the 14th International Conference on World Wide Web, ser. WWW ’05. New York, NY, USA: ACM, pp. 613–622, 2005.CrossRefGoogle Scholar
  7. 7.
    Christie G.R., Blackett S.A., Hunter P.J., Bullivant D.P.: Modelling and visualising the heart. Computing and Visualisation in Science 4: 227–235, 2002.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Christie G.R., Nielsen P.M.F., Blackett S.A., Bradley C.P., Hunter P.J.: FieldML: Standards, tools and repositories. Phil. Trans. Roy. Soc. A 367: 1869–1884, 2009.CrossRefGoogle Scholar
  9. 9.
    Cooling M., Hunter P.J., Crampin E.J.: Modelling hypertrophic IP3 transients in the cardiac myocyte. Biophys. J. 93: 3421–3433, 2007.CrossRefGoogle Scholar
  10. 10.
    Cuellar A.A., Lloyd C.M., Nielsen P.F., Bullivant D.P., Nickerson D.P., Hunter P.J.: An overview of CellML 1.1, a biological model description language. SIMULATION: Transactions of The Society for Modelling and Simulation International 79(12): 740–747, 2003.CrossRefGoogle Scholar
  11. 11.
    Folk M., Cheng A., Yates K.: HDF5: A file format and I/O library for high performance computing applications. In Proceedings of Supercomputing’99 (CD-ROM), 1999.Google Scholar
  12. 12.
    Fonseca C.G., Backhaus M., Bluemke D.A., Britten R.D., Chung J.D., Cowan B.R., Dinov I.D., Finn J.P., Hunter P.J., Kadish A.H., Lee D.C., Lima J.A.C., Medrano-Gracia P., Shivkumar K., Tao W., Young A.A.: The Cardiac Atlas Project – An imaging database for computational modelling and statistical atlases of the heart. Bioinformatics, in press 2011.Google Scholar
  13. 13.
    Gamma E., Helm R., Johnson R., Vlissides J.: Design patterns: Elements of reusable objectoriented software. Addison-Wesley, Reading, MA, 1995.Google Scholar
  14. 14.
    Garny A., Nickerson D., Cooper J., Weber dos Santos R., McKeever S., Nielsen P., Hunter P.: CellML and associated tools and techniques. Phil. Trans. Roy. Soc. A 366: 3017–3043, 2008.CrossRefGoogle Scholar
  15. 15.
    Hinch R., Greenstein J.R., Tanskanen A.J. et al.: A simplified local control model of calciuminduced calcium release in cardiac ventricular myocytes. Biophys. J. 87: 3723–3736, 2004.CrossRefGoogle Scholar
  16. 16.
    Hooks D.A., Tomlinson K.A., Marsden S.G. et al.: Cardiac microstructure: Implications for electrical propagation and defibrillation in the heart. Circ. Res. 9: 331–338, 2002.CrossRefGoogle Scholar
  17. 17.
    Hunter P.J.: Modelling living systems: The IUPS/EMBS Physiome Project. Proceedings of the IEEE 94: 678–691, 2006.CrossRefGoogle Scholar
  18. 18.
    Hunter P.J.: The IUPS Physiome Project: a framework for computational physiology. Progress in Biophysics and Molecular Biology 85(2–3): 551–569, 2004.CrossRefGoogle Scholar
  19. 19.
    Hunter P.J., Borg T.K.: Integration from proteins to organs: The Physiome Project. Nature Reviews Molecular and Cell Biology 4, 237–243, 2003.CrossRefGoogle Scholar
  20. 20.
    Hunter P.J., Nielsen P.M.F.: A strategy for integrative computational physiology. Physiology 20: 316–325, 2005.CrossRefGoogle Scholar
  21. 21.
    Hunter P.J., Pullan A.J., Smaill B.H.: Modelling total heart function. Ann Review of Biomedical Engineering 5: 147–177, 2003.CrossRefGoogle Scholar
  22. 22.
    Hunter P.J., Smaill B.H.: The analysis of cardiac function: a continuum approach. Prog. Biophys. Molec. Biol. 52: 101–164, 1989.CrossRefGoogle Scholar
  23. 23.
    Hunter P.J., Viceconti M.: The VPH-Physiome Project: Standards and tools for multi-scale modelling in clinical applications. IEEE Reviews in Biomedical Engineering 2: 40–53, 2009.CrossRefGoogle Scholar
  24. 24.
    Kemp B., Olivan J.: European data format ‘plus’(EDF+), an EDF alike standard format for the exchange of physiological data. Clinical Neurophysiology 114(9): 1755–1761, 2003.CrossRefGoogle Scholar
  25. 25.
    Kereiakes D.J.: Interpreting the COURAGE trial. PCI is no better than medical therapy for stable angina? Seeing is not believing. Cleve. Clin. J. Med. 74(9): 637–8, 640–2, 2007.CrossRefGoogle Scholar
  26. 26.
    Kohl P.: Bollensdorff C.: Garny A.: Effects of mechanosensitive ion channels on ventricular electrophysiology: experimental and theoretical models. Exp. Physiol. 91(2): 307–321, 2006.CrossRefGoogle Scholar
  27. 27.
    LeGrice I.J., Hunter P.J., Smaill B.H.: Laminar structure of the heart: a mathematical model. Am. J. Physiol. 272: H2466–H2476, 1997.Google Scholar
  28. 28.
    LeGrice I.J., Smaill B.H., Chai L.Z. et al.: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. 269: H571–H582, 1995.Google Scholar
  29. 29.
    Livshitz L.M., Rudy Y.: Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents. AJP: Heart and Circulatory Physiology 292: H2854–H2866, 2007.CrossRefGoogle Scholar
  30. 30.
    Lloyd C.M., Halstead M.D.B., Nielsen P.M.F.: CellML: its future, present and past. Prog. Biophys. Mol. Biol. 85: 433–450, 2004.CrossRefGoogle Scholar
  31. 31.
    Lloyd C.M., Lawson J.R., Hunter P.J., Nielsen P.F.: The CellML Model Repository. Bioinformatics 24(18): 2122–2123, 2008.CrossRefGoogle Scholar
  32. 32.
    Miller A.K., Marsh J., Reeve A., Garny A., Britten R., Halstead M., Cooper J., Nickerson D.P., Nielsen P.M.F.: An overview of the CellML API and its implementation. BMCBioinformatics 11: 178, 2010.Google Scholar
  33. 33.
    Moody G.B.: WFDB Applications Guide, 10th edition, physionet.org/physiotools/wag/wag.htm, 2011.Google Scholar
  34. 34.
    Nash M.P., Hunter P.J.: Computational mechanics of the heart. J. Elasticity 61(1–3): 113–141, 2001.MathSciNetGoogle Scholar
  35. 35.
    Nickerson D.P., Hunter P.J.: The Noble cardiac ventricular electrophysiology models in CellML. Prog. Biophys. Molec. Biol. 90: 346–359, 2006.CrossRefGoogle Scholar
  36. 36.
    Nickerson D.P., Terkildsen J., Hamilton K.L., Hunter P.J.: A tool for multi-scale modeling of the renal nephron. Interface Focus 1: 417–425, 2011.CrossRefGoogle Scholar
  37. 37.
    Niederer S.A., Hunter P.J., Smith N.P.: A quantitative analysis of cardiac myocyte relaxation: a simulation study. Biophys. J. 90(5): 1697–722, 2006.CrossRefGoogle Scholar
  38. 38.
    Nordsletten D.A., Hunter P.J., Smith N.P.: Conservative arbitrary lagrangian-eulerian forms for boundary driven and ventricular flows. Int. J. Num. Meth. Fluids 56(8): 1457–1463, 2007.MathSciNetCrossRefGoogle Scholar
  39. 39.
    Nørager S., Iakovidis I., Cabrera M., Özcivelek R. (eds.): Towards virtual physiological human: multilevel modelling and simulation of the human anatomy and physiology – White Paper Edited by DG INFSO & DG JRC, Nov 2005. http://ec.europa.eu/information society/activities/health/docs/events/barcelona2005/ec-vph-white-paper2005nov.pdf.
  40. 40.
    Pandit S.V., Clark R.B., Giles W.R. et al.: A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys. J. 81(6): 3029–3051, 2001.CrossRefGoogle Scholar
  41. 41.
    Saucerman J.J., McCulloch A.D.: Mechanistic systems models of cell signalling networks: a case study of myocyte adrenergic regulation. Prog. Biophys. and Mol. Biol. 11: 369–391, 2000.Google Scholar
  42. 42.
    Saucerman J.J., Brunton L.L., Michailova A.P., McCulloch A.D.: Modeling beta-adrenergic control of cardiac myocyte contractility in silico. Journal of Biological Chemistry 48: 47997–48003, 2003.CrossRefGoogle Scholar
  43. 43.
    Savio-Galimberti E., Frank J., Inoue M., Goldhaber J.I., Cannell M.B., Bridge J.H., Sachse F.B.: Novel features of the rabbit transverse tubular system revealed by quantitative analysis of three-dimensional reconstructions from confocal images. Biophys. J. 95(4): 2053–2062, 2008.CrossRefGoogle Scholar
  44. 44.
    Schlögl A.: Dataformats supported by BioSig biosig.sf.net, pub.ist.ac.at/?schloegl/biosig/TESTED 2008.Google Scholar
  45. 45.
    Schlögl A.: An overview on data formats for biomedical signals. In Image Processing, Biosignal Processing, Modelling and Simulation, Biomechanics, ser. IFMBE Proceedings, Dössel O. and Schlegel A. (eds.), World Congress on Medical Physics and Biomedical Engineering, Springer, 25/4: 1557–1560, 2009.Google Scholar
  46. 46.
    Schneider R.: About libRASCH. www.librasch.org/librasch/, 2007.Google Scholar
  47. 47.
    Smith N.P., Nickerson D.P., Crampin E.J., Hunter P.J.: Multiscale computational modeling of the heart. Acta Numerica 13: 371–431, 2004.MathSciNetCrossRefGoogle Scholar
  48. 48.
    Smith N.P., Pullan A.J., Hunter P.J.: An anatomically based model of coronary blood flow and myocardial mechanics. SIAM J. Appl. Maths. 62: 990–1018, 2002.MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    ten Tusscher K.H.W.J., Noble D., Noble P.J., Panfilov A.V.: A model for human ventricular tissue, American Journal of Physiology 286: H1573–H1589, 2004.Google Scholar
  50. 50.
    Terkildsen J.R., Niederer S., Crampin E.J., Hunter P.J. Smith N.P.: Using Physiome standards to couple cellular functions for cardiac excitationcontraction. Exp. Physiol. 93: 919–929, 2008.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Peter Hunter
    • 1
    • 2
  • Chris Bradley
    • 1
    • 2
  • Randall Britten
    • 1
  • David Brooks
    • 1
  • Luigi Carotenuto
    • 3
  • Richard Christie
    • 1
  • Alejandro Frangi
    • 3
  • Alan Garny
    • 2
  • David Ladd
    • 1
  • Caton Little
    • 1
  • David Nickerson
    • 1
  • Poul Nielsen
    • 1
  • Andrew Miller
    • 1
  • Xavier Planes
    • 3
  • Martin Steghoffer
    • 3
  • Alistair Young
    • 1
  • Tommy Yu
    • 1
  1. 1.Auckland Bioengineering Institute (ABI)University of AucklandNew Zealand
  2. 2.Department of Physiology, Anatomy and Genetics (DPAG)University of OxfordUK
  3. 3.Center for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB)Universitat Pompeu FabraBarcelonaSpain

Personalised recommendations