Skip to main content

The VPH-Physiome Project: Standards, tools and databases for multi-scale physiological modelling

  • Chapter
Modeling of Physiological Flows

Abstract

The VPH/Physiome project is developing tools and model databases for computational physiology based on three primary model encoding standards: CellML, SBML and FieldML. For the modelling community these standards are the equivalent of the DICOM standard for the clinical imaging community and it is important that the tools adhere to these standards to ensure that models from different groups can be curated, annotated, reused and combined. This chapter discusses the development and use of the VPH/Physiome standards, tools and databases, and also discusses the minimum information standards and ontology-based metadata standards that are complementary to the markup language standards. Data standards are not as well developed as the model encoding standards (with the DICOM standard for medical image encoding being the outstanding exception) but one new data standard being developed as part of the VPH/Physiome suite is BioSignalML and this is described here also. The PMR2 (Physiome Model Repository 2) database for CellML and FieldML files is also described, together with the Application Programming Interfaces (APIs) that facilitate access to the models from the visualization (cmgui and GIMIAS) or computational (OpenCMISS, OpenCell/OpenCOR and other) software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The concept of a “Physiome Project” was presented in a report from the Commission on Bioengineering in Physiology to the International Union of Physiological Sciences (IUPS) Council at the 32nd World Congress in Glasgow in 1993. The term “physiome” comes from “physio” (life) + “ome” (as a whole), and is intended to provide a “quantitative description of physiological dynamics and functional behaviour of the intact organism” [2, 3, 4]. A satellite workshop “On designing the Physiome Project”, organized and chaired by the Chair of the IUPS ‘Commission on Bioengineering in Physiology’ (Prof Jim Bassingthwaighte), was held in Petrodvoretz, Russia, following the 33 rd World Congress in St Petersburg in 1997. A symposium on the Physiome Project was held at the 34th World Congress of IUPS in Christchurch, New Zealand, in August 2001 and the Physiome Project was designated by the IUPS executive as a major focus for IUPS during the next decade.

  2. 2.

    This coordinates various US Governmental funding agencies involved in multi-scale bioengineering modelling research including NIH, NSF, NASA, the Dept of Energy (DoE), the Dept of Defense (DoD), the US Dept of Agriculture and the Dept of Veteran Affairs. See www.nibib.nih.gov/Research/MultiScaleModelling/IMAG.

  3. 3.

    The STEP (“Strategy for a European Physiome”) report is available at www.europhysiome. org/roadmap

  4. 4.

    See www.vph-noe.eu for details on the 15 projects funded under the VPH calls.

  5. 5.

    See www.physiome.jp for details on the Japanese Physiome Project.

  6. 6.

    www.cellml.org

  7. 7.

    www.sbml.org

  8. 8.

    www.fieldml.org

  9. 9.

    www.cellml.org/models

  10. 10.

    Interface Description Language. See www.OMG.org/cgi-bin/doc?formal/02-06-39

  11. 11.

    Distributed under a tri-licence MPL, GPL or LGPL.

  12. 12.

    Distributed under a tri-license MPL, GPL or LGPL. See also 7.

  13. 13.

    GIMIAS is released under a BSD license.

  14. 14.

    www.taverna.org.uk

  15. 15.

    All software components developed by the CAP are open source and are freely available under the Mozilla Public License Version 1.1 (mozilla.org/MPL/MPL-1.1.txt).

References

  1. Aspell M.: Professional Plone Development. Packt Publishing, 2007.

    Google Scholar 

  2. Beard D.A.: A biophysical model of the mitochondrial respiratory system and oxidative phosphorylation. PLoS. Comp. Biol. 1(4), 2005.

    Google Scholar 

  3. Beard D.A., Britten R., Cooling M.T, Garny A., Halstead M.D.B., Hunter P.J., Lawson J, Lloyd C.M., Marsh J., Miller A., Nickerson D.P., Nielsen P.M.F., Nomura T., Subramanium S., Wimalaratne S.M., Yu T.: CellML metadata: Standards, associated tools and repositories. Philosophical Transactions of the Royal Society A367(1895): 1845–1867, 2009.

    Google Scholar 

  4. Bradley C.P., Pullan A.J., Hunter P.J.: Geometric modelling of the human torso using cubic Hermite elements. Annals of Biomedical Engineering 25(1): 96–111, 1997.

    Article  Google Scholar 

  5. Bradley et al.: OpenCMISS: A multi-physics & multi-scale computational infrastructure for the VPH/Physiome project. Progress in Biophysics and Molecular Biology, In press 2011.

    Google Scholar 

  6. Carroll J.J., Bizer C., Hayes P., Stickler P.: Named graphs, provenance and trust, In: Proceedings of the 14th International Conference on World Wide Web, ser. WWW ’05. New York, NY, USA: ACM, pp. 613–622, 2005.

    Chapter  Google Scholar 

  7. Christie G.R., Blackett S.A., Hunter P.J., Bullivant D.P.: Modelling and visualising the heart. Computing and Visualisation in Science 4: 227–235, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  8. Christie G.R., Nielsen P.M.F., Blackett S.A., Bradley C.P., Hunter P.J.: FieldML: Standards, tools and repositories. Phil. Trans. Roy. Soc. A 367: 1869–1884, 2009.

    Article  Google Scholar 

  9. Cooling M., Hunter P.J., Crampin E.J.: Modelling hypertrophic IP3 transients in the cardiac myocyte. Biophys. J. 93: 3421–3433, 2007.

    Article  Google Scholar 

  10. Cuellar A.A., Lloyd C.M., Nielsen P.F., Bullivant D.P., Nickerson D.P., Hunter P.J.: An overview of CellML 1.1, a biological model description language. SIMULATION: Transactions of The Society for Modelling and Simulation International 79(12): 740–747, 2003.

    Article  Google Scholar 

  11. Folk M., Cheng A., Yates K.: HDF5: A file format and I/O library for high performance computing applications. In Proceedings of Supercomputing’99 (CD-ROM), 1999.

    Google Scholar 

  12. Fonseca C.G., Backhaus M., Bluemke D.A., Britten R.D., Chung J.D., Cowan B.R., Dinov I.D., Finn J.P., Hunter P.J., Kadish A.H., Lee D.C., Lima J.A.C., Medrano-Gracia P., Shivkumar K., Tao W., Young A.A.: The Cardiac Atlas Project – An imaging database for computational modelling and statistical atlases of the heart. Bioinformatics, in press 2011.

    Google Scholar 

  13. Gamma E., Helm R., Johnson R., Vlissides J.: Design patterns: Elements of reusable objectoriented software. Addison-Wesley, Reading, MA, 1995.

    Google Scholar 

  14. Garny A., Nickerson D., Cooper J., Weber dos Santos R., McKeever S., Nielsen P., Hunter P.: CellML and associated tools and techniques. Phil. Trans. Roy. Soc. A 366: 3017–3043, 2008.

    Article  Google Scholar 

  15. Hinch R., Greenstein J.R., Tanskanen A.J. et al.: A simplified local control model of calciuminduced calcium release in cardiac ventricular myocytes. Biophys. J. 87: 3723–3736, 2004.

    Article  Google Scholar 

  16. Hooks D.A., Tomlinson K.A., Marsden S.G. et al.: Cardiac microstructure: Implications for electrical propagation and defibrillation in the heart. Circ. Res. 9: 331–338, 2002.

    Article  Google Scholar 

  17. Hunter P.J.: Modelling living systems: The IUPS/EMBS Physiome Project. Proceedings of the IEEE 94: 678–691, 2006.

    Article  Google Scholar 

  18. Hunter P.J.: The IUPS Physiome Project: a framework for computational physiology. Progress in Biophysics and Molecular Biology 85(2–3): 551–569, 2004.

    Article  Google Scholar 

  19. Hunter P.J., Borg T.K.: Integration from proteins to organs: The Physiome Project. Nature Reviews Molecular and Cell Biology 4, 237–243, 2003.

    Article  Google Scholar 

  20. Hunter P.J., Nielsen P.M.F.: A strategy for integrative computational physiology. Physiology 20: 316–325, 2005.

    Article  Google Scholar 

  21. Hunter P.J., Pullan A.J., Smaill B.H.: Modelling total heart function. Ann Review of Biomedical Engineering 5: 147–177, 2003.

    Article  Google Scholar 

  22. Hunter P.J., Smaill B.H.: The analysis of cardiac function: a continuum approach. Prog. Biophys. Molec. Biol. 52: 101–164, 1989.

    Article  Google Scholar 

  23. Hunter P.J., Viceconti M.: The VPH-Physiome Project: Standards and tools for multi-scale modelling in clinical applications. IEEE Reviews in Biomedical Engineering 2: 40–53, 2009.

    Article  Google Scholar 

  24. Kemp B., Olivan J.: European data format ‘plus’(EDF+), an EDF alike standard format for the exchange of physiological data. Clinical Neurophysiology 114(9): 1755–1761, 2003.

    Article  Google Scholar 

  25. Kereiakes D.J.: Interpreting the COURAGE trial. PCI is no better than medical therapy for stable angina? Seeing is not believing. Cleve. Clin. J. Med. 74(9): 637–8, 640–2, 2007.

    Article  Google Scholar 

  26. Kohl P.: Bollensdorff C.: Garny A.: Effects of mechanosensitive ion channels on ventricular electrophysiology: experimental and theoretical models. Exp. Physiol. 91(2): 307–321, 2006.

    Article  Google Scholar 

  27. LeGrice I.J., Hunter P.J., Smaill B.H.: Laminar structure of the heart: a mathematical model. Am. J. Physiol. 272: H2466–H2476, 1997.

    Google Scholar 

  28. LeGrice I.J., Smaill B.H., Chai L.Z. et al.: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. 269: H571–H582, 1995.

    Google Scholar 

  29. Livshitz L.M., Rudy Y.: Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents. AJP: Heart and Circulatory Physiology 292: H2854–H2866, 2007.

    Article  Google Scholar 

  30. Lloyd C.M., Halstead M.D.B., Nielsen P.M.F.: CellML: its future, present and past. Prog. Biophys. Mol. Biol. 85: 433–450, 2004.

    Article  Google Scholar 

  31. Lloyd C.M., Lawson J.R., Hunter P.J., Nielsen P.F.: The CellML Model Repository. Bioinformatics 24(18): 2122–2123, 2008.

    Article  Google Scholar 

  32. Miller A.K., Marsh J., Reeve A., Garny A., Britten R., Halstead M., Cooper J., Nickerson D.P., Nielsen P.M.F.: An overview of the CellML API and its implementation. BMCBioinformatics 11: 178, 2010.

    Google Scholar 

  33. Moody G.B.: WFDB Applications Guide, 10th edition, physionet.org/physiotools/wag/wag.htm, 2011.

    Google Scholar 

  34. Nash M.P., Hunter P.J.: Computational mechanics of the heart. J. Elasticity 61(1–3): 113–141, 2001.

    MathSciNet  Google Scholar 

  35. Nickerson D.P., Hunter P.J.: The Noble cardiac ventricular electrophysiology models in CellML. Prog. Biophys. Molec. Biol. 90: 346–359, 2006.

    Article  Google Scholar 

  36. Nickerson D.P., Terkildsen J., Hamilton K.L., Hunter P.J.: A tool for multi-scale modeling of the renal nephron. Interface Focus 1: 417–425, 2011.

    Article  Google Scholar 

  37. Niederer S.A., Hunter P.J., Smith N.P.: A quantitative analysis of cardiac myocyte relaxation: a simulation study. Biophys. J. 90(5): 1697–722, 2006.

    Article  Google Scholar 

  38. Nordsletten D.A., Hunter P.J., Smith N.P.: Conservative arbitrary lagrangian-eulerian forms for boundary driven and ventricular flows. Int. J. Num. Meth. Fluids 56(8): 1457–1463, 2007.

    Article  MathSciNet  Google Scholar 

  39. Nørager S., Iakovidis I., Cabrera M., Özcivelek R. (eds.): Towards virtual physiological human: multilevel modelling and simulation of the human anatomy and physiology – White Paper Edited by DG INFSO & DG JRC, Nov 2005. http://ec.europa.eu/information society/activities/health/docs/events/barcelona2005/ec-vph-white-paper2005nov.pdf.

  40. Pandit S.V., Clark R.B., Giles W.R. et al.: A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys. J. 81(6): 3029–3051, 2001.

    Article  Google Scholar 

  41. Saucerman J.J., McCulloch A.D.: Mechanistic systems models of cell signalling networks: a case study of myocyte adrenergic regulation. Prog. Biophys. and Mol. Biol. 11: 369–391, 2000.

    Google Scholar 

  42. Saucerman J.J., Brunton L.L., Michailova A.P., McCulloch A.D.: Modeling beta-adrenergic control of cardiac myocyte contractility in silico. Journal of Biological Chemistry 48: 47997–48003, 2003.

    Article  Google Scholar 

  43. Savio-Galimberti E., Frank J., Inoue M., Goldhaber J.I., Cannell M.B., Bridge J.H., Sachse F.B.: Novel features of the rabbit transverse tubular system revealed by quantitative analysis of three-dimensional reconstructions from confocal images. Biophys. J. 95(4): 2053–2062, 2008.

    Article  Google Scholar 

  44. Schlögl A.: Dataformats supported by BioSig biosig.sf.net, pub.ist.ac.at/?schloegl/biosig/TESTED 2008.

    Google Scholar 

  45. Schlögl A.: An overview on data formats for biomedical signals. In Image Processing, Biosignal Processing, Modelling and Simulation, Biomechanics, ser. IFMBE Proceedings, Dössel O. and Schlegel A. (eds.), World Congress on Medical Physics and Biomedical Engineering, Springer, 25/4: 1557–1560, 2009.

    Google Scholar 

  46. Schneider R.: About libRASCH. www.librasch.org/librasch/, 2007.

    Google Scholar 

  47. Smith N.P., Nickerson D.P., Crampin E.J., Hunter P.J.: Multiscale computational modeling of the heart. Acta Numerica 13: 371–431, 2004.

    Article  MathSciNet  Google Scholar 

  48. Smith N.P., Pullan A.J., Hunter P.J.: An anatomically based model of coronary blood flow and myocardial mechanics. SIAM J. Appl. Maths. 62: 990–1018, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  49. ten Tusscher K.H.W.J., Noble D., Noble P.J., Panfilov A.V.: A model for human ventricular tissue, American Journal of Physiology 286: H1573–H1589, 2004.

    Google Scholar 

  50. Terkildsen J.R., Niederer S., Crampin E.J., Hunter P.J. Smith N.P.: Using Physiome standards to couple cellular functions for cardiac excitationcontraction. Exp. Physiol. 93: 919–929, 2008.

    Article  Google Scholar 

Download references

Acknowledgements

The development of standards, tools and databases for the VPH/Physiome project is being funded by many public good funding agencies in Europe (e.g. the EU ICT VPH 2, 4 & 6 calls and particularly the NoE and euHeart projects), the US (the MSM Physiome RFPs) and many other countries including the UK (especially the Wellcome Trust), Japan and New Zealand. The authors thank the many people from many different groups around the globe who have contributed to the infrastructure described here – for details see the websites given for the various software projects described in the document. Funding from the Wellcome Trust for the Heart Physiome Project and the European Union for the VPH Network of Excellence (VPH NoE FP7-ICT2008-223920) and the euHeart project (VPH euHeart FP7-ICT2008-224495) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hunter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Hunter, P. et al. (2012). The VPH-Physiome Project: Standards, tools and databases for multi-scale physiological modelling. In: Ambrosi, D., Quarteroni, A., Rozza, G. (eds) Modeling of Physiological Flows. MS&A — Modeling, Simulation and Applications, vol 5. Springer, Milano. https://doi.org/10.1007/978-88-470-1935-5_8

Download citation

Publish with us

Policies and ethics