Mathematical and numerical methods for reaction-diffusion models in electrocardiology

  • Piero Colli-Franzone
  • Luca F. Pavarino
  • Simone Scacchi
Part of the MS&A — Modeling, Simulation and Applications book series (MS&A, volume 5)


This paper presents a review of current mathematical and numerical models of the bioelectrical activity in the ventricular myocardium, describing cardiac cells excitability and the action-potential propagation in cardiac tissue. The degenerate reaction-diffusion system called the Bidomain model is introduced and interpreted as macroscopic averaging of a cellular model on a periodic assembling of myocytes. The main theoretical results for the cellular and Bidomain models are given. Various approximate models based on some relaxed approaches are also considered, such as Monodomain and eikonal-curvature models. The main numerical methods for the Bidomain and Monodomain models are then reviewed. In particular, we focus on isoparametric finite elements, semi-implicit time discretizations and a parallel iterative solver based on a multilevel Schwarz preconditioned conjugate gradient method. The Bidomain solver is finally applied to the study of the excitation processes generated by virtual electrode response in 3D orthotropic blocks of myocardial tissue.


Conductivity Tensor Virtual Cathode Anodal Stimulation Bidomain Model Virtual Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Bruno Taccardi for introducing them to the field of Mathematical Physiology and for many stimulating discussions.


  1. 1.
    Aliev R.R., Panfilov A.V.: A simple two-variable model of cardiac excitation. Chaos Sol. Fract. 7: 293–301, 1996.Google Scholar
  2. 2.
    Ambrosio L., Colli Franzone P., Savaré G.: On the asymptotic behaviour of anisotropic energies arising in the cardiac bidomain model. Interface Free Bound. 2(3): 213–266, 2000.Google Scholar
  3. 3.
    Austin T.M., Trew M.L., Pullan A.J.: Solving the cardiac Bidomain equations for discontinuous conductivities. IEEE Trans. Biomed. Eng. 53(7): 1265–1272, 2005.Google Scholar
  4. 4.
    Balay S., Buschelman K., Gropp W.D., Kaushik D., Knepley M., Curfman McInnes L., Smith B.F., Zhang H.: PETSc Users Manual.Tech. Rep. ANL-95/11 – Revision 2.1.5, Argonne National Laboratory, 2002.Google Scholar
  5. 5.
    Bassetti F.: Variable time-step discretization of degenerate evolution equations in Banach space. Numer. Funct. Anal. Optim. 24(3–4): 391–426, 2003.MathSciNetMATHGoogle Scholar
  6. 6.
    Belhamadia Y.: A Time-Dependent Adaptive Remeshing for Electrical Waves of the Heart. IEEE Tran. Biomed. Eng. 55(2): 443–452, 2008.Google Scholar
  7. 7.
    Belhamadia Y., Fortin A., Bourgault Y.: Towards accurate numerical method for monodomain models using a realistic heart geometry. Math. Biosci. 220(2): 89–101, 2009.MathSciNetMATHGoogle Scholar
  8. 8.
    Bellettini G., Colli Franzone P., Paolini M.: Convergence of front propagation for anisotropic bistable reaction-diffusion equations. Asymp. Anal. 15: 325–358, 1997.MATHGoogle Scholar
  9. 9.
    Bellettini G., Paolini M.: Anisotropic motion by mean curvature in the context of Finsler geometry. Hokkaido Math. J. 25: 537–566, 1996.MathSciNetMATHGoogle Scholar
  10. 10.
    Bendahmane M., Karlsen K.H.: Analysis of a class of degenerate reaction–diffusion systems and the bidomain model of cardiac tissue. Netw. Heterog. Media 1(1): 185–218, 2006.MathSciNetMATHGoogle Scholar
  11. 11.
    Bendahmane M., Karlsen K.H.: Convergence of a finite volume scheme for the bidomain model of cardiac tissue. Appl. Numer. Math. 59(9): 2266–2284, 2009.MathSciNetMATHGoogle Scholar
  12. 12.
    Bensoussan A., Lions J.-L., Papanicolaou G.: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam, 1978.MATHGoogle Scholar
  13. 13.
    Bordas R., Carpentieri B., Fotia G., Maggio F., Nobes R., Pitt-Francis J., Southern J.: Simulation of cardiac electrophysiology on next-generation high-performance computers. Phil. Trans. R. Soc. A 367(1895): 1951–1969, 2009.MathSciNetMATHGoogle Scholar
  14. 14.
    Boulakia M., Fernandez M.A., Gerbeau J.-F., Zemzemi N.: A coupled system of PDEs of ODEs arising in electrocardiograms models. Appl. Math. Res. Express. AMRX, 2: Art. ID abn002, 28, 2008. Google Scholar
  15. 15.
    Bourgault Y., Coudiere Y., Pierre C.: Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology. Nonlinear Anal.-Real World Appl. 10(1): 458–482, 2009.MathSciNetMATHGoogle Scholar
  16. 16.
    Cherry E.M., Greenside H.S., Henriquez C.S.: Efficient simulation of three-dimansional anisotropic cardiac tissue using an adaptive mesh refinement method. Chaos 13: 853–865, 2003.MathSciNetMATHGoogle Scholar
  17. 17.
    Clayton R.H., Panfilov A.V.: A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Progr. Biophys. Molec. Biol. 96: 19–43, 2008.Google Scholar
  18. 18.
    Clayton R.H., et al.: Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Progr. Biophys. Molec. Biol. 104: 22–48, 2011.Google Scholar
  19. 19.
    Clements J.C., Nenonen J., Li P.K.J., Horacek B.M.: Activation dynamics in anisotropic cardiac tissue via decoupling. Ann. Biomed. Eng. 32(7): 984–990, 2004.Google Scholar
  20. 20.
    Colli Franzone P., Deuflhard P., Erdmann B., Lang J., Pavarino L.F.: Adaptivity in space and time for reaction-diffusion systems in Electrocardiology. SIAM J. Sci. Comput. 28(3): 942–962, 2006.MathSciNetMATHGoogle Scholar
  21. 21.
    Colli Franzone P., Guerri L., Rovida S.: Wavefront propagation in an activation model of the anisotropic cardiac tissue: Asymptotic analysis and numerical simulations. J. Math. Biol. 28: 121–176, 1990.MathSciNetMATHGoogle Scholar
  22. 22.
    Colli Franzone P., Guerri L., Tentoni S.: Mathematical modeling of the excitation process in myocardial tissue: Influence of fibre rotation on wavefront propagation and potential field. Math. Biosci. 101: 155–235, 1990.MATHGoogle Scholar
  23. 23.
    Colli Franzone P., Guerri L.: Spread of excitation in 3-D models of the anisotropic cardiac tissue I: Validation of the eikonal approach. Math. Biosci. 113: 145–209, 1993.MATHGoogle Scholar
  24. 24.
    Colli Franzone P., Guerri L., Pennacchio M., Taccardi B.: Spread of excitation in 3-D models of the anisotropic cardiac tissue II: Effects of fibre architecture and ventricular geometry. Math. Biosci. 147: 131–171, 1998.MathSciNetMATHGoogle Scholar
  25. 25.
    Colli Franzone P., Guerri L., Pennacchio M., Taccardi B.: Spread of excitation in 3-D models of the anisotropic cardiac tissue III: Effects of ventricular geometry and fibre structure on the potential distribution. Math. Biosci. 151: 51–98, 1998.MATHGoogle Scholar
  26. 26.
    Colli Franzone P., Guerri L., Pennacchio M., Taccardi B.: Anisotropic mechanisms for multiphasic unipolar electrograms. Simulation studies and experimental recordings. Ann. Biomed. Eng. 28: 1–17, 2000.Google Scholar
  27. 27.
    Colli Franzone P., Savaré G.: Degenerate evolution systems modeling the cardiac electric field at micro and macroscopic level. In Evolution equations, Semigroups and Functional Analysis, A. Lorenzi and B. Ruf Editors, pp. 49–78, Birkhäuser, 2002.Google Scholar
  28. 28.
    Colli Franzone P., Guerri L., Taccardi B.: Modeling ventricular excitation: axial and orthotropic effects on wavefronts and potentials. Math. Biosci. 188: 191–205, 2004.MathSciNetMATHGoogle Scholar
  29. 29.
    Colli Franzone P., Pavarino L.F.: A parallel solver for reaction-diffusion systems in computational electrocardiology. Math. Mod. Meth. Appl. Sci. 14(6): 883–911, 2004.MATHGoogle Scholar
  30. 30.
    Colli Franzone P., Pavarino L.F., Savarè G.: Computational Electrocardiology: mathematical and numerical modeling, in Complex Systems in Biomedicine, A. Quarteroni et al. (eds.), Springer, pp. 187–241, 2006.Google Scholar
  31. 31.
    Colli Franzone P., Pavarino L.F., Scacchi S.: Dynamical effects of myocardial ischemia in anisotropic cardiac models in three dimensions. Math. Mod. Meth. Appl. Sci. 17(12): 1965–2008, 2007.MATHGoogle Scholar
  32. 32.
    Colli Franzone P., Pavarino L.F., Scacchi S., Taccardi B.: Monophasic action potentials generated by bidomain modeling as a tool for detecting cardiac repolarization times. Am. J. Physiol. (Heart Circ. Physiol.) 293: H2771–H2785, 2007.Google Scholar
  33. 33.
    Colli Franzone P., Pavarino L.F., Scacchi S.: Exploring anodal and cathodal make and break cardiac excitation mechanisms in a 3D anisotropic Bidomain model. Math. Biosci. 230(2): 96–114, 2011.MathSciNetMATHGoogle Scholar
  34. 34.
    Colli Franzone P., Pavarino L.F., Scacchi S.: Anode make and break excitation mechanisms and strength–interval curves: bidomain simulations in 3D rotational anisotropy. In FIMH 2011, D.N. Metaxas and L. Axel (eds.), LNCS 6666: 1–10, Springer-Verlag Berlin Heidelberg 2011.Google Scholar
  35. 35.
    Colli Franzone P., Pavarino L.F., Scacchi S., Taccardi B.: Modeling ventricular repolarization: effects of transmural and apex-to-base heterogeneities in action potential durations. Math. Biosci. 214(1–2): 140–152, 2008.MathSciNetMATHGoogle Scholar
  36. 36.
    Colli Franzone P., Pavarino L.F., Taccardi B.: Simulating patterns of excitation, repolarization and action potential duration with cardiac Bidomain and Monodomain models. Math. Biosci. 197: 35–66, 2005.MathSciNetMATHGoogle Scholar
  37. 37.
    Colli Franzone P., Pavarino L.F., Taccardi B.: Effects of transmural electrical heterogeneities and electrotonic interactions on the dispersion of cardiac repolarization and action potential duration: A simulation study. Math. Biosci. 204(1): 132–165, 2006.MathSciNetMATHGoogle Scholar
  38. 38.
    Costa K.D., May-Newman K., Farr D., O’Dell W.G., McCulloch A.D., Omens J.H.: Threedimensional residual strain in midanterior canine left ventricle. Am. J. Physiol. (Heart Circ. Physiol.) 42: H1968–H1976, 1997.Google Scholar
  39. 39.
    Coudiere Y., Pierre C.: Stability and convergence of a finite volume method for two systems of reaction-diffusion equations in electro-cardiology. Nonlinear Anal.-Real World Appl. 7(4): 916–935, 2006.MathSciNetMATHGoogle Scholar
  40. 40.
    Deuflhard P., Erdmann B., Roitzsch R., T G.: Lines. Adaptive finite element simulation of ventricular fibrillation dynamics. Comput. Visual. Sci. 12(5): 201–205, 2009.MathSciNetGoogle Scholar
  41. 41.
    Dryja M., Widlund O.B.: Multilevel additive methods for elliptic finite element problems. In Parallel algorithms for partial differential equations (Kiel, 1990). Notes Numer. Fluid Mech. 31: 58–69, 1991.Google Scholar
  42. 42.
    Dryja M., Sarkis M.V., Widlund O.B.: Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math. 72(3): 313–348, 1996.MathSciNetMATHGoogle Scholar
  43. 43.
    Efimov I.R., Gheng Y., Van Eagoner D.R., Mazgalev T., Tchou P.J.: Virtual electrodeinduced phase singularity: a basic mechanism of defibrillation failure. Circ. Res. 82: 918–925, 1998.Google Scholar
  44. 44.
    Efimov I.R., Gray R.A., Roth B.J.: Virtual electrodes and deexcitation: new insights into fibrillation induction and defibrillation. J. Cardiovasc Electrophysiol. 11: 339–353, 2000.Google Scholar
  45. 45.
    Entcheva E., Eason J., Efimov I.R., Cheng Y., Malkin R., Clayton F.: Virtual electrode effects in transvenous defibrillation-modulation by structure and interface: evidence from bidomain simulations an optical mapping. J. Cardiovasc. Electrophysiol. 9: 949–961, 1998.Google Scholar
  46. 46.
    Ethier M., Bourgault Y.: Semi-implicit time-discretization schemes for the Bidomain model. SIAM J. Numer. Anal. 46(5): 2443–2468, 2008.MathSciNetMATHGoogle Scholar
  47. 47.
    Faber G.M., Rudy Y.: Action potential and contractility changes in [Na+](i) overloaded cardiac myocytes: a simulation study. Biophys. J. 78(5): 2392–2404, 2000.Google Scholar
  48. 48.
    Fenton F.H., Cherry E.M., Hastings H.M., Evans S.J.: Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity. Chaos 12(3): 852–892, 2002.Google Scholar
  49. 49.
    Fenton F.H., Karma A.: Vortex dynamics in three-dimensional continuous myocardium with fibre rotation: filament instability and fibrillation. Chaos 8: 20–47, 1998.MATHGoogle Scholar
  50. 50.
    FitzHugh R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1: 445–466, 1961.Google Scholar
  51. 51.
    Fischer G., Tilg B., Modre R., Huiskamp G., Fetzer J., Rucker W., Wach P.: A bidomain model based BEM-FEM coupling formulation for anisotropic cardiac tissue. Ann. Biomed. Eng. 28(10): 1229–1243, 2000.Google Scholar
  52. 52.
    Gerardo Giorda L., Mirabella L., Nobile F., Perego M., Veneziani A.: A model-based blocktriangular preconditioner for the Bidomain system in electrocardiology. J. Comp. Phys. 228(10): 3625–3639, 2009.MATHGoogle Scholar
  53. 53.
    Geselowitz D.B., Miller W.T.: A bidomain model for anisotropic cardiac muscle. Ann. Biomed. Eng. 11: 191–206, 1983.Google Scholar
  54. 54.
    Gulrajani R.M., Roberge F.A., Savard P.: The inverse problem of electrocardiography. In Comprehensive Electrocardiology, P.W. Macfarlane and T.T.V. Lawrie (eds.), I: ch. 9, pp. 237–288, Pergamon Oxford, 1989.Google Scholar
  55. 55.
    Harrild D.M., Henriquez C.S.: A finite volume model of cardiac propagation. Ann. Biomed. Eng. 28(2): 315–334, 1997.Google Scholar
  56. 56.
    Heidenreich E.A., Rodriguez J.F., Gaspar F.J., Doblaré M.: Fourth-order compact schemes with adaptive time step for monodomain reaction–diffusion equations. J. Comput. Appl. Math. 216(1): 39–55, 2008.MathSciNetMATHGoogle Scholar
  57. 57.
    Henriquez C.S.: Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit. Rev. Biomed. Eng. 21: 1–77, 1993.MathSciNetGoogle Scholar
  58. 58.
    Henriquez C.S., Muzikant A.L., Smoak C.K.: Anisotropy, fibre curvature, and bath loading effects on activation in thin and thick cardiac tissue preparations: Simulations in a threedimensional bidomain model. J. Cardiovasc. Electrophysiol. 7(5): 424–444, 1996.Google Scholar
  59. 59.
    Hodgkin A., Huxley A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.) 117: 500–544, 1952.Google Scholar
  60. 60.
    Hooke N.: Efficient simulation of action potential propagation in a bidomain. Ph. D. Thesis, Duke Univ., Dept. of Comput. Sci., 1992. Google Scholar
  61. 61.
    Hooks D.A., Trew M.L.: Construction and validation of a plunge electrode array for threedimensional determination of conductivity in the heart. IEEE Trans. Biomed. Eng. 55(2): 626–635, 2008.Google Scholar
  62. 62.
    Hoyt R.H., Cohen M.L., Saffitz J.E.: Distribution and three-dimensional structure of intercellular junctions in canine myocardium. Circ. Res. 64: 563–574, 1989.Google Scholar
  63. 63.
    Hunter P. et al.: A vision and strategy for the virtual physiological human in 2010 and beyond. Phil. Trans. R. Soc. A 368: 2595–2614, 2010.Google Scholar
  64. 64.
    Keener J.P.: An eikonal-curvature equation for action potential propagation in myocardium. J. Math. Biol. 29: 629–651, 1991.MathSciNetMATHGoogle Scholar
  65. 65.
    Keener J.P.: Direct activation and defibrillation of cardiac tissue, J. Theor. Biol. 178: 313–324, 1996.Google Scholar
  66. 66.
    Keener J.P., Panfilov A.V.: Three-Dimensional propagation in the heart: the effects of geometry and fibre orientation on propagation in myocardium. In Cardiac Electrophysiology: From Cell to Bedside, D.P. Zipes and J. Jalife (eds.), W.B. Sounders Co, Philadelphia, pp. 335-347, 1995.Google Scholar
  67. 67.
    Keener J.P., Panfilov A.V.: The effects of geometry and fibre orientation on propagation and extrcellular potentials in myocardium. In Computational Biology of the Heart, A.V. Panfilov, and A.V. Holden (eds.), John Wiley & Sons, New York, Chapter 8, pp. 235–258, 1997.Google Scholar
  68. 68.
    Keener J.P., Bogar K.: A numerical method for the solution of the bidomain equations in cardiac tissue. Chaos 8: 234–241, 1998.MATHGoogle Scholar
  69. 69.
    Keener J.P., Sneyd J.: Mathematical Physiology. Springer-Verlag, New York 1998.MATHGoogle Scholar
  70. 70.
    Krassowska W., Neu J.C.: Effective boundary conditions for syncytial tissue. IEEE Trans. Biomed. Eng. 41: 143–150, 1994.Google Scholar
  71. 71.
    LeGrice I.J., Smaill B.H., Chai L.Z., Edgar S.G., Gavin J.B., Hunter P.J.: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. (Heart Circ. Physiol.) 269(38): H571–H582, 1995.Google Scholar
  72. 72.
    LeGrice I.J., Smaill B.H., Hunter P.J.: Laminar structure of the heart: a mathematical model. Am. J. Physiol. (Heart Circ. Physiol.) 272(41): H2466–H2476, 1997.Google Scholar
  73. 73.
    Linge S., Sundnes J., Hanslien M., Lines G.T., Tveito A.: Numerical solution of the bidomain equations. Phil. Trans. R. Soc. A 367(1895): 1931–1950, 2009.MathSciNetMATHGoogle Scholar
  74. 74.
    Luo C., Rudy Y.: A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction. Circ. Res. 68(6): 1501–1526, 1991.Google Scholar
  75. 75.
    Mardal K.-A., Nielsen B.F., Cai X., Tveito A.: An order optimal solver for the discretized bidomain equations. Numer. Linear Algebra Appl. 14(2): 83–98, 2007.MathSciNetMATHGoogle Scholar
  76. 76.
    Miller W.T., Geselowitz D.B.: Simulation studies of the electrocardiogram I. The normal heart. Circ. Res. 43(2): 301–315, 1978.Google Scholar
  77. 77.
    Murillo M., Cai X.C.: A fully implicit parallel algorithm for simulating the non-linear electrical activity of the heart. Numer. Linear Algebr. Appl. 11(2–3): 261–277, 2004.MathSciNetMATHGoogle Scholar
  78. 78.
    Munteanu M., Pavarino L.F.: Implicit parallel solvers in computational electrocardiology. in Applied Analysis and Differential Equations, O. Carja and I. I. Vrabie (eds.), World Scientific, pp. 255–266, 2007.Google Scholar
  79. 79.
    Munteanu M., Pavarino L.F.: Decoupled Schwarz algorithms for implicit discretization of nonlinear Monodomain and Bidomain systems. Math. Mod. Meth. Appl. Sci. 19(7): 1065–1097, 2009.MathSciNetMATHGoogle Scholar
  80. 80.
    Munteanu M., Pavarino L.F., Scacchi S.: A scalable Newton-Krylov-Schwarz method for the Bidomain reaction-diffusion system. SIAM J. Sci. Comput. 31(5): 3861–3883, 2009.MathSciNetMATHGoogle Scholar
  81. 81.
    Noble D., Rudy Y.: Models of cardiac ventricular action potentials: iterative interaction between experiment and simulation. Phil. Trans. R. Soc. A 359: 1127–1142, 2001.Google Scholar
  82. 82.
    Oleinik O.A., Shamaev A.S., Yosifian G.A.: Mathematical problems in elasticity and homogenization. North-Holland, Amsterdam, 1992.MATHGoogle Scholar
  83. 83.
    Osher S., Fedkin R.: Level set methods and dynamic implicit surfaces. Applied Mathematical Sciences, vol. 153, Springer-Verlag, New York, 2003.MATHGoogle Scholar
  84. 84.
    Panfilov A.V.: Spiral breakup as a model ov ventricular fibrillation. Chaos 8: 57–64, 1998.MATHGoogle Scholar
  85. 85.
    Pavarino L.F., Scacchi S.: Multilevel additive Schwarz preconditioners for the Bidomain reaction-diffusion system. SIAM J. Sci. Comput. 31(1): 420–443, 2008.MathSciNetMATHGoogle Scholar
  86. 86.
    Pennacchio M., Savar`e G., Colli Franzone P.: Multiscale modeling for the electrical activity of the heart. SIAM J. Math. Anal. 37(4): 1333–1370, 2006.MathSciNetMATHGoogle Scholar
  87. 87.
    Pennacchio M., Simoncini V.: Efficient algebraic solution of reaction–diffusion systems for the cardiac excitation process. J. Comput. Appl. Math. 145(1): 49–70, 2002.MathSciNetMATHGoogle Scholar
  88. 88.
    Pennacchio M., Simoncini V.: Algebraic multigrid preconditioners for the bidomain reaction-diffusion system. Appl. Numer. Math. 59(12): 3033–3050, 2009.MathSciNetMATHGoogle Scholar
  89. 89.
    Plank G., Burton R.A.B., Hales P., Bishop M., Mansoori T., Bernabeu M.O., Garny A., Prassl A.J., Bollendorsff C., Mason F., Mahmood F., Rodriguez B., Grau V., Schneider J.E., Gavaghan D., Kohl P.: Generation of histo-anatomically representative models of the individual heart: tools and application. Phil. Trans. R. Soc. A 367(1895): 2257–2292, 2009.MATHGoogle Scholar
  90. 90.
    Plank G., Liebmann M., Weber dos Santos R., Vigmond E.J., Haase G.: Algebraic Multigrid Preconditioner for the Cardiac Bidomain Model. IEEE Trans. Biomed. Eng. 54(4): 585–596, 2007.MathSciNetGoogle Scholar
  91. 91.
    Plank G., Prassl A., Hofer E., Trayanova N.A.: Evaluation intramural virtual electrodes in the myocardial wedge preparation: simulations of experimental conditions. Biophys. J. 94: 1904–1915, 2008.Google Scholar
  92. 92.
    Plonsey R.: Bioelectric sources arising in excitable fibres (Alza lecture), Ann. Biomed. Eng. 16: 519–546, 1988.Google Scholar
  93. 93.
    Plonsey R., Heppner D.: Consideration of quasi-stationarity in electrophysiological systems. Bull. Math. Biophys. 29: 657–664, 1967.Google Scholar
  94. 94.
    Potse M., Dub`e B., Richer J., Vinet A., Gulrajani R.: A comparison of Monodomain and Bidomain reaction–diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng. 53(12): 2425–2434, 2006.Google Scholar
  95. 95.
    Potse M., Vinet A., Opthof T., Coronel R.: Validation of simple model for the morphology of the T wave in unipolar electrograms. Am. J. Physiol. HeartCirc. Physiol. 297: H792–H801, 2009.Google Scholar
  96. 96.
    Pullan A.J., Buist M.L., Cheng L.K.: Mathematical Modelling and Electrical Activity of the Heart: From Cell to Body Surface and back Again. World Scientific, Singapore, 2005.Google Scholar
  97. 97.
    Puwal S., Roth B.J.: Forward Euler stability of the bidomain model of cardiac tissue. IEEE Trans. Biomed. Eng. 54(5): 951–953, 2007.Google Scholar
  98. 98.
    Qu Z., Garfinkel A.: An advanced algorithm for solving partial differential equation in cardiac conduction. IEEE Trans. Biomed. Eng. 46: 1166–1168, 1999.Google Scholar
  99. 99.
    Quan W., Evans S.J., Hastings H.M.: Efficient integration of a realistic two-dimensional cardiac tissue model by domain decomposition. IEEE Trans. Biomed. Eng. 45: 372–385, 1998.Google Scholar
  100. 100.
    Ranjan R., Tomaselli G.F., Marban E.: A novel mechanism of anode-break stimulation predicted by bidomain modeling. Circ. Res. 84: 153–156, 1999.Google Scholar
  101. 101.
    Rogers J.M., McCulloch A.D.:Acollocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41: 743–757, 1994.Google Scholar
  102. 102.
    Roth B.J.: Approximate analytic solutions to the bidomain equations with unequal anisotropy ratio. Phys. Rev. E 55(2): 1819–1826, 1997.Google Scholar
  103. 103.
    Roth B.J.: How the anisotropy of the intracellular and extracellular conductivities influence stimulation of cardiac muscle. J. Math. Biol. 30: 633–646, 1992.MATHGoogle Scholar
  104. 104.
    Roth B.J., Wikswo J.P. Jr.: Electrical stimulation of cardiac tissue: a bidomain model with active membrane properties. IEEE Trans. Biomed. Eng. 41(3): 232–240, 1994.Google Scholar
  105. 105.
    Roth B.J.: A mathematical model of make and break electrical stimulation of cardiac tissue by a unipolar anode or cathode. IEEE Trans. Biomed. Eng. 42: 1174–1184, 1995.Google Scholar
  106. 106.
    Roth B.J.: Strength-Interval curve for cardiac tissue predicted using the bidomain model. J. Cardiovasc. Electrophysiol. 7: 722–737, 1996.Google Scholar
  107. 107.
    Roth B.J.: Nonsustained reentry following successive stimulation of cardiac tissue through a unipolar electrode. J. Cardiovasc. Electrophysiol. 8: 768–778, 1997.Google Scholar
  108. 108.
    Roth B.J., Lin S.-F., Wikswo J.P. Jr.: Unipolar stimulation of cardiac tissue. J. Electrocardiol. 31(Suppl.): 6–12, 1998.Google Scholar
  109. 109.
    Roth B.J., Chen J.: Mechanism of anode break excitation in the heart: the relative influence of membrane and electrotonic factors. J. Biol. Systems 7(4): 541–552, 1999.Google Scholar
  110. 110.
    Roth B.J., Patel S.G.: Effects of elevated extracellular potassium ion concentration on anodal excitation of cardiac tissue. J. Cardiovasc. Electrophysiol. 14: 1351–1355, 2003.Google Scholar
  111. 111.
    Janks D.L., Roth B.J.: The bidomain theory of pacing. In Cardiac Bioelectric Therapy, Efimov I.R., Kroll M.W. and Tchou (eds.), Ch. 2.1, 63–83, Springer Science+Business Media, LLc, 2009.Google Scholar
  112. 112.
    Rudy Y., Oster H.S.: The electrocardiographic inverse problem. Crit. Rev. Biomed. Eng. 20: 25–45, 1992.Google Scholar
  113. 113.
    Rudy Y., Silva J.R.: Computational biology in the study of cardiac ion channels and cell electrophysiology. Quart. Rev. Biophys. 39(1): 57–116, 2006.Google Scholar
  114. 114.
    Saffitz J.E., Kanter H.L., Green K.G., Tolley T.K., Beyer E.C.: Tissue-specific determinants of anisotropic conduction velocity in canine atrial and ventricular myocardium. Circ. Res. 74: 1065–1070, 1994.Google Scholar
  115. 115.
    Saleheen H.I., Ng K.T.: A new three-dimensional finite-difference bidomain formulation for inhomogeneous anisotropic cardiac tissues. IEEE Trans. Biomed. Eng. 45(1): 15–25, 1998.Google Scholar
  116. 116.
    Sambelashvili A., Efimov I.R.: Dynamics of virtual electrode-induced scroll-wave reentry in a 3D bidomain model. Am. J. Physiol Heart Circ. Physiol. 287: H1570–H1581, 2004.Google Scholar
  117. 117.
    Sambelashvili A., Nikolski V.P., Efimov I.R.: Virtual electrode theory explains pacing threshold increase caused by cardiac tissue damage. Am. J. Physiol Heart Circ. Physiol. 286: H2183–H2194, 2004.Google Scholar
  118. 118.
    Sanchez-Palencia E., Zaoui A.: Homogenization Techniques for Composite Media. Lectures Notes in Physics, volume 272. Springer-Verlag; Berlin; 1987MATHGoogle Scholar
  119. 119.
    Sanfelici S.: Convergence of the Galerkin approximation of a degenerate evolution problem in electrocardiology. Numer. Meth. Part. Diff. Eq. 18: 218–240, 2002.MathSciNetMATHGoogle Scholar
  120. 120.
    Scacchi S.: A hybrid multilevel Schwarz method for the bidomain model. Comp. Meth. Appl. Mech. Engrg. 197(45–48): 4051–4061, 2008.MathSciNetMATHGoogle Scholar
  121. 121.
    Scacchi S.: A multilevel hybrid Newton-Krylov-Schwarz method for the Bidomain model of electrocardiology. Comp. Meth. Appl. Mech. Engrg. 200(5–8): 717–725, 2011.MathSciNetMATHGoogle Scholar
  122. 122.
    Scacchi S., Colli Franzone P., Pavarino L.F., Taccardi B.: A reliability analysis of cardiac repolarization time markers. Math. Biosci. 219(2): 113–128, 2009.MathSciNetMATHGoogle Scholar
  123. 123.
    Scacchi S., Colli Franzone P., Pavarino L.F., Taccardi B.: Computing cardiac recovery maps from electrograms and monophasic action potentials under heterogeneous and ischemic conditions. Math. Mod. Meth. Appl. Sci. 20(7): 1089–1127, 2010.MATHGoogle Scholar
  124. 124.
    Sepulveda N.G., Roth B.J., Wikswo J.P. Jr.: Current injection into a two-dimensional anisotropic bidomain. Biophys. J. 55: 987–999, 1989.Google Scholar
  125. 125.
    Sidorov V.Y., Woods M.C., Baudenbacher P., Baudenbacher F.: Examination of stimulation mechanism and strength-interval curve in cardiac tissue. Am. J. Physiol Heart Circ. Physiol. 289: H2602–H2615, 2005.Google Scholar
  126. 126.
    Skouibine K.B., Krassowska W.: Increasing the computational efficiency of a bidomain model of defibrillation using a time-dependent activating function. Ann. Biomed. Eng. 28: 772–780, 2000.Google Scholar
  127. 127.
    Skouibine K.B., Trayanova N., Moore P.: A numerically efficient model for the simulation of defibrillation in an active bidomain sheet of myocardium. Math. Biosci. 166(1): 85–100, 2000.MATHGoogle Scholar
  128. 128.
    Skouibine K.B., Trayanova N.A., Moore P.: Anode/cathode make and break phenomena in a model of defibrillation. IEEE Trans. Biomed. Eng. 46(7): 769–777, 1999.Google Scholar
  129. 129.
    Smith B.F., Bjorstad P., Gropp W.D.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press, 1996.Google Scholar
  130. 130.
    Streeter D.: Gross morphology and fibre geometry in the heart. In Handbook of Physiology. Vol. 1, Sect. 2, pp. 61–112. R.M. Berne (ed.), Williams & Wilkins, 1979.Google Scholar
  131. 131.
    Sundnes J., Lines G.T., Mardal K.A., Tveito A.: Multigrid Block Preconditioning for a Coupled System of Partial Differential Equations Modeling the Electrical Activity in the Heart. Comput. Meth. Biomech. Biomed. Eng. 5(6): 397–409, 2002.Google Scholar
  132. 132.
    Sundnes J., Lines G.T., Tveito A.: An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. Math. Biosci. 194(2): 233–248, 2005.MathSciNetMATHGoogle Scholar
  133. 133.
    Sundnes J., Lines G.T., Cai X., Nielsen B.F., Mardal K.-A., Tveito A.: Computing the electrical activity of the heart, Springer, 2006.Google Scholar
  134. 134.
    Sundnes J., Nielsen B.F., Mardal K.A., Lines G.T., Mardal K.A., Tveito A.: On the computational complexity of the bidomain and the monodomain models of electrophysiology. Ann. Biomed. Engrg. 34(7): 1088–1097, 2006.Google Scholar
  135. 135.
    Taccardi B., Punske B., Lux R., MacLeod R., Ershler P., Dustman T., Vyhmeister Y.: Usefull lesson from body surface mapping on body. J. Cardiovasc. Electrophysiol. 9(7): 773–786, 1998.Google Scholar
  136. 136.
    Taccardi B., Punske B.B.: Body surface Potential Mapping In Cardiac Electrophysiology. From cell to Bedside., D. Zipes and J. Jalife (eds.), W.B. Saunders Company, Philadelphia, PA, 4th Edition, pp. 803–811, 2004.Google Scholar
  137. 137.
    Ten Tusscher K.H.W.J., Panfilov A.V.: Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions. Phys. Med. Biol. 51: 6141–6156, 2006.Google Scholar
  138. 138.
    Ten Tusscher K.H.W.J., Panfilov A.V.: Modelling of the ventricular conduction system. Progr. Biophys. Molec. Biol. 96(1–3): 152–170, 2008.Google Scholar
  139. 139.
    Tomlinson K.A., Hunter P.J., Pullan A.J.: A finite element method for an eikonal equation model of myocardial excitation wavefront propagation. SIAM J. Appl. Math. 63(1): 324–350, 2002.MathSciNetMATHGoogle Scholar
  140. 140.
    Toselli A., Widlund O.B.: Domain Decomposition Methods: Algorithms and Theory. Computational Mathematics, Vol. 34. Springer-Verlag, Berlin, 2004.Google Scholar
  141. 141.
    Trangenstein J.A., Kim C.: Operator splitting and adaptive mesh refinement for the Luo-Rudy I model. J. Comput. Phys. 196: 645–679, 2004.MathSciNetMATHGoogle Scholar
  142. 142.
    Trew M., Le Grice I., Smaill B., Pullan A.: A finite volume method for modeling discontinuous electrical activation in cardiac tissue. Ann. Biomed. Eng. 33(5): 590–602, 2005.Google Scholar
  143. 143.
    Trew M., Smaill B., Bullivant D., Hunter P., Pullan A.: A generalized finite difference method for modeling cardiac electrical activation on arbitrary, irregular computational meshes. Math. Biosci. 198(2): 169–189, 2005.MathSciNetMATHGoogle Scholar
  144. 144.
    Trew M.L., Caldwell B.J., Sands G.B., Hooks D.A., Tai D.C.-S., Austin T.M., LeGrice I.J., Pullan A.J., Smaill B.H.: Cardiac electrophysiology and tissue structure: bridging the scale gap with a joint measurement and modelling paradigm. Exp. Physiol. 91(2): 355–370, 2006.Google Scholar
  145. 145.
    Tung L.: A bidomain model for describing ischemic myocardial D.C. potentials. Ph.D. dissertation M.I.T., Cambridge, MA, 1978.Google Scholar
  146. 146.
    Veneroni M.: Reaction-diffusion systems for the microscopic cellular model of the cardiac action potential. Math. Meth. Appl. Sci. 29: 1631–1661, 2006.MathSciNetMATHGoogle Scholar
  147. 147.
    Veneroni M.: Reaction-diffusion systems for the macroscopic Bidomain model of the cardiac action potential. Nonlinear Anal.-Real World Appl. 10(2): 849–868, 2009.MathSciNetMATHGoogle Scholar
  148. 148.
    Vigmond E.J., Aguel F., Trayanova N.A.: Computational techniques for solving the bidomain equations in three dimensions. IEEE Trans. Biomed. Eng. 49(11): 1260–1269, 2002.Google Scholar
  149. 149.
    Vigmond E.J., Weber dos Santos R., Prassl A.J., Deo M., Plank G.: Solvers for the cardiac bidomain equations. Progr. Biophys. Molec. Biol. 96: 3–18, 2008.Google Scholar
  150. 150.
    Weber DosSantos R., Plank G., Bauer S., Vigmond E.J.: Parallel multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 51 (11): 1960–1968, 2004.Google Scholar
  151. 151.
    Whiteley J.P.: An efficient numerical technique for the solution of the monodomain and bidomain equations. IEEE Trans. Biomed. Eng. 53(11): 2139–2147, 2006.Google Scholar
  152. 152.
    Whiteley J.P.: Physiology Driven Adaptivity for the Numerical Solution of the Bidomain Equations. Ann. Biomed. Eng. 35(9): 1510–1520, 2007.Google Scholar
  153. 153.
    Wikswo J.P. Jr.: Tissue anisotropy, the cardiac bidomain, and the virtual cathode effect, In Cardiac Electrophysiology: from cell to bedside, (2nd ed), Zipes D.P. and Jalife J. (eds.): 348–361, WB Saunders, Philadelphia, 1994.Google Scholar
  154. 154.
    Wikswo J.P. Jr., Lin L.-F., Abbas R.A.: Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. Biophys. J. 69: 2195–2210, 1995.Google Scholar
  155. 155.
    Wiskwo J.P. Jr., Roth B.J.: Virtual electrode theory of pacing. In Cardiac Bioelectric Therapy Efimov I.r., Kroll M.W. and Tchou (eds.), Ch. 4.3, 283–330, Springer Science+Business Media, LLc, 2009.Google Scholar
  156. 156.
    Xie F., Qu Z.L., Yang J., Baher A., Weiss J.N., Garfinkel A.: A simulation study of the effects of cardiac anatomy in ventricular fibrillation. J. Clin Invest. 113: 686–693, 2004.Google Scholar
  157. 157.
    Xu A., R M.: Guevara. Two forms of spiral-wave reentry in an ionic model of ischemic ventricular myocardium. Chaos 8(1): 157–174, 1998.Google Scholar
  158. 158.
    Ying W.J., Rose D.J., Henriquez C.S.: Efficient Fully Implicit Time Integration Methods for Modeling Cardiac Dynamics. IEEE Trans. Biomed. Eng. 55(12): 2701–2711, 2008.Google Scholar
  159. 159.
    Zhang X.: Multilevel Schwarz methods. Numer. Math. 63(4): 521–539, 1992.MathSciNetMATHGoogle Scholar
  160. 160.
    Zipes D.P., Jalife J. (eds.): Cardiac Electrophysiology: From Cell to Bedside, 5th ed., Saunders, 2009.Google Scholar
  161. 161.
    Zozor S., Blanc O., Jacquemet V., Virag N., Vesin J., Pruvot E., Kappenberger L., Henriquez C.: A numerical scheme for modeling wavefront propagation on a monolayer of arbitrary geometry. IEEE Trans. Biomed. Eng. 50(4): 412–420, 2003.Google Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Piero Colli-Franzone
    • 1
  • Luca F. Pavarino
    • 2
  • Simone Scacchi
    • 2
  1. 1.Department of MathematicsUniversity of PaviaPaviaItaly
  2. 2.Department of MathematicsUniversity of MilanoMilanoItaly

Personalised recommendations