Advertisement

Numerical simulation of electrocardiograms

  • Muriel Boulakia
  • Miguel A. Fernández
  • Jean-Frédéric Gerbeau
  • Nejib Zemzemi
Part of the MS&A — Modeling, Simulation and Applications book series (MS&A, volume 5)

Abstract

This chapter presents a concise overview of various mathematical and numerical problems raised by the simulation of electrocardiograms (ECGs). A model for the propagation of the electrical activation in the heart and in the torso is proposed. Some of its mathematical properties are analyzed. This model is not aimed at reproducing the complex phenomena taking place at the microscopic level. It has been devised to produce realistic healthy ECGs, and some pathological ones, with a reasonable level of complexity. Rather, it relies on various assumptions that are carefully discussed through their impact on the ECGs. The coupling between the heart and the torso is a critical numerical issue which is addressed. In particular, efficient coupling strategies based on explicit algorithms are presented and analyzed. The chapter ends with some preliminary results of a reduced order model based on the Proper Orthogonal Decomposition (POD) method.

Keywords

Proper Orthogonal Decomposition Mode Proper Orthogonal Decomposition Ionic Model Proper Orthogonal Decomposition Basis Restitution Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to thank Michel Sorine for many fruitful discussions, and Elisa Schenone for the simulations shown in Figs. 4.12 and 4.13.

References

  1. 1.
    Aehlert B.: ECGs Made Easy. Mosby Jems, Elsevier, third edition, 2006.Google Scholar
  2. 2.
    Aliev R.R., Panfilov A.V.: Asimple two-variable model of cardiac excitation. Chaos, Solitons & Fractals 3(7): 293–301, 1996.CrossRefGoogle Scholar
  3. 3.
    Austin T.M., Trew M.L., Pullan A.J.: Solving the cardiac bidomain equations for discontinuous conductivities. IEEE Trans. Biomed. Eng. 53(7): 1265–72, 2006.CrossRefGoogle Scholar
  4. 4.
    [4] Beeler G., Reuter H.: Reconstruction of the action potential of ventricular myocardial fibres. J. Physiol. (Lond.) 268: 177–210, 1977. Google Scholar
  5. 5.
    [5] Bendahmane M., Karlsen K.H.: Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue. Netw. Heterog. Media 1(1): 185–218 (electronic), 2006.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    [6] Bordas R., Grau V., Burton R.A.B., Hales P., Schneider J.E., Gavaghan D., Kohl P., Rodriguez B.: Integrated approach for the study of anatomical variability in the cardiac purkinje system: from high resolution MRI to electrophysiology simulation. In Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, pp. 6793–6796. IEEE, 2010. Google Scholar
  7. 7.
    Boulakia M., Cazeau S., Fernández M.A., Gerbeau J.-F., Zemzemi N.: Mathematical modeling of electrocardiograms: a numerical study. Ann. Biomed. Eng. 38(3): 1071–1097, 2010.CrossRefGoogle Scholar
  8. 8.
    [8] Boulakia M., Fernández M.A., Gerbeau J.-F., Zemzemi N.: A coupled system of PDEs and ODEs arising in electrocardiograms modelling. Applied Math. Res. Exp. 2008(abn002): 28, 2008.Google Scholar
  9. 9.
    Bourgault Y., Coudière Y., Pierre C.: Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology. Nonlinear Anal. Real World Appl. 10(1): 458–482, 2009.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    [10] Bourgault Y., Ethier M., Le Blanc V.G.: Simulation of electrophysiological waves with an unstructured finite element method. M2AN Math. Model. Numer. Anal. 37(4): 649–661, 2003.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Buist M., Pullan A.: Torso coupling techniques for the forward problem of electrocardiography. Ann. Biomed. Eng. 30(10): 1299–1312, 2002.CrossRefGoogle Scholar
  12. 12.
    [12] Chapelle D., Fernández M.A., Gerbeau J.-F., Moireau P., Sainte-Maire J., Zemzemi N.: Numerical simulation of the electromechanical activity of the heart. In N. Ayache, H. Delingette, and M. Sermesant (eds.), Functional Imaging and Modeling of the Heart, volume 5528 of Lecture Notes in Computer Science, pp. 357–365. Springer, 2009.CrossRefGoogle Scholar
  13. 13.
    Clayton O., Bernus R.H., Cherry E.M., Dierckx H., Fenton F.H., Mirabella L., Panfilov A.V., Sachse F.B., Seemann G., Zhang H.: Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Progress in Biophysics and Molecular Biology 104(1–3): 22–48, 2011.CrossRefGoogle Scholar
  14. 14.
    Clements J., Nenonen J., Li P.K.J., Horacek B.M.: Activation dynamics in anisotropic cardiac tissue via decoupling. Ann. Biomed. Eng. 32(7): 984–990, 2004.CrossRefGoogle Scholar
  15. 15.
    Colli Franzone P., Pavarino L.F.: A parallel solver for reaction-diffusion systems in computational electrocardiology. Math. Models Methods Appl. Sci. 14(6): 883–911, 2004.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Colli Franzone P., Pavarino L.F., Scacchi S., Taccardi B.: Effects of anisotropy and transmural heterogeneity on the T-wave polarity of simulated electrograms. In N. Ayache, H. Delingette, and M. Sermesant (eds,), Functional Imaging and Modeling of the Heart, volume 5528 of Lecture Notes in Computer Science, pp. 513–523. Springer, 2009.CrossRefGoogle Scholar
  17. 17.
    Colli Franzone P., Pavarino L.F., Taccardi B.: Simulating patterns of excitation, repolarization and action potential duration with cardiac bidomain and monodomain models. Math. Biosci. 197(1): 35–66, 2005.MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    [18] Colli Franzone P., Savaré G.: Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level. In Evolution equations, semigroups and functional analysis (Milano, 2000), volume 50 of Progr. Nonlinear Differential Equations Appl., pp. 49–78. Birkhäuser, Basel, 2002.Google Scholar
  19. 19.
    Djabella K., Sorine M.: Differential model of the excitation-contraction coupling in a cardiac cell for multicycle simulations. In EMBEC’05, volume 11, pp. 4185–4190, Prague, 2005.Google Scholar
  20. 20.
    Dumas L., El Alaoui L.: How genetic algorithms can improve a pacemaker efficiency. In GECCO ’07: Proceedings of the 2007 GECCO conference companion on Genetic and evolutionary computation, pp. 2681–2686, New York, NY, USA, 2007. ACM.Google Scholar
  21. 21.
    [21] Ebrard G., Fernández M.A., Gerbeau J.-F., Rossi F., Zemzemi N.: From intracardiac electrograms to electrocardiograms. models and metamodels. In N. Ayache, H. Delingette, and M. Sermesant (eds.), Functional Imaging and Modeling of the Heart, volume 5528 of Lecture Notes in Computer Science, pp. 524–533. Springer, 2009.CrossRefGoogle Scholar
  22. 22.
    Efimov I.R., Gray R.A., Roth B.J.: Virtual electrodes and deexcitation: new insights into fibrillation induction and defibrillation. J. Cardiovasc. Electrophysiol. 11(3): 339–353, 2000.CrossRefGoogle Scholar
  23. 23.
    Ethier M., Bourgault Y.: Semi-implicit time-discretization schemes for the bidomain model. SIAM J. Numer. Anal. 46(5): 2443–2468, 2008.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Fenton F., Karma A.: Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. Chaos 8(1): 20–47, 1998.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Fernández M.A., Zemzemi N.: Decoupled time-marching schemes in computational cardiac electrophysiology and ECG numerical simulation. Math. Biosci. 226(1): 58–75, 2010.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    FitzHugh R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1: 445–465, 1961.CrossRefGoogle Scholar
  27. 27.
    Goldberger A.L.: Clinical Electrocardiography: A Simplified Approach. Mosby-Elsevier, 7th edition, 2006.Google Scholar
  28. 28.
    Gulrajani R.M.: Models of the electrical activity of the heart and computer simulation of the electrocardiogram. Crit. Rev. Biomed. Eng. 16(1): 1–6, 1988.Google Scholar
  29. 29.
    Hooke N., Henriquez C.S., Lanzkron P., Rose D.: Linear algebraic transformations of the bidomain equations: implications for numerical methods. Math. Biosci. 120(2): 127–145, 1994.MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Huiskamp G.: Simulation of depolarization in a membrane-equations-based model of the anisotropic ventricle. IEEE Trans. Biomed. Eng. 5045(7): 847–855, 1998.CrossRefGoogle Scholar
  31. 31.
    Keener J. P., Bogar K.: A numerical method for the solution of the bidomain equations in cardiac tissue. Chaos 8(1): 234–241, 1998.MATHCrossRefGoogle Scholar
  32. 32.
    Keldermann R.H., Nash M.P., Panfilov A.V.: Modeling cardiac mechano-electrical feedback using reaction-diffusion-mechanics systems. Physica D: Nonlinear Phenomena 238(11–12): 1000–1007, 2009.MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Keller D.U.J., Seemann G., Weiss D.L., Farina D., Zehelein J., Dössel O.: Computer based modeling of the congenital long-qt 2 syndrome in the visible man torso: From genes to ECG. In Proceedings of the 29th Annual International Conference of the IEEE EMBS, pp. 1410–1413, 2007.Google Scholar
  34. 34.
    Kerckhoffs R.C.P., Healy S.N., Usyk T.P., McCulloch A.D.: Computational methods for cardiac electromechanics. Proc. IEEE 94(4): 769–783, 2006.CrossRefGoogle Scholar
  35. 35.
    Krassowska W., Neu J.C.: Effective boundary conditions for syncitial tissues. IEEE Trans. Biomed. Eng. 41(2): 143–150, 1994.CrossRefGoogle Scholar
  36. 36.
    Kunisch K., Volkwein S.: Galerkin proper orthogonal decomposition methods for parabolic problems. Numerische Mathematik 90(1): 117–148, 2001.MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Lab M.J., Taggart P., Sachs F.: Mechano-electric feedback. Cardiovasc. Res. 32: 1–2, 1996.Google Scholar
  38. 38.
    Lines G.T., Buist M.L., Grottum P., Pullan A.J., Sundnes J., Tveito A.: Mathematical models and numerical methods for the forward problem in cardiac electrophysiology. Comput. Visual. Sci. 5(4): 215–239, 2003.MATHCrossRefGoogle Scholar
  39. 39.
    Lines G.T., Grøttum P., Tveito A.: Modeling the electrical activity of the heart: a bidomain model of the ventricles embedded in a torso. Comput. Vis. Sci. 5(4): 195–213, 2003.MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Luo C., Rudy Y.: A dynamic model of the cardiac ventricular action potential. i. simulations of ionic currents and concentration changes. Circ. Res. 74(6): 1071–1096, 1994.CrossRefGoogle Scholar
  41. 41.
    Luo C.H., Rudy Y.: A model of the ventricular cardiac action potential. depolarisation, repolarisation, and their interaction. Circ. Res. 68(6): 1501–1526, 1991.CrossRefGoogle Scholar
  42. 42.
    Malmivuo J., Plonsey R.: Bioelectromagnetism. Principles and applications of bioelectric and biomagnetic fields. Oxford University Press, New York, 1995.Google Scholar
  43. 43.
    Mitchell C.C., Schaeffer D.G.: A two-current model for the dynamics of cardiac membrane. Bulletin Math. Bio. 65: 767–793, 2003.CrossRefGoogle Scholar
  44. 44.
    Murillo M., Cai X.-C.: A fully implicit parallel algorithm for simulating the non-linear electrical activity of the heart. Numer. Linear Algebra Appl. 11(2-3): 261–277, 2004.MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Nagumo J., Arimoto S., Yoshizawa S.: An active pulse transmission line simulating nerve axon. Proceedings of the IRE 50(10): 2061–2070, 1962.CrossRefGoogle Scholar
  46. 46.
    Neu J.C., Krassowska W.: Homogenization of syncytial tissues. Crit. Rev. Biomed. Eng. 21(2): 137–199, 1993.Google Scholar
  47. 47.
    Nickerson D., Smith N.P., Hunter P.: New developments in a strongly coupled cardiac electromechanical model. Europace 7 Suppl 2: 118–127, 2005.CrossRefGoogle Scholar
  48. 48.
    Noble D., Varghese A., Kohl P., Noble P.: Improved guinea-pig ventricular cell model incorporating a diadic space, ikr and iks, and length- and tension-dependent processes. Can. J. Cardiol. 14(1): 123–134, 1998.Google Scholar
  49. 49.
    Pennacchio M., Savaré G., Colli Franzone P.: Multiscale modeling for the bioelectric activity of the heart. SIAM Journal on Mathematical Analysis 37(4): 1333–1370, 2005.MathSciNetCrossRefGoogle Scholar
  50. 50.
    Potse M., Dubé B., Gulrajani M.: ECG simulations with realistic human membrane, heart, and torso models. In Proceedings of the 25th Annual Intemational Conference of the IEEE EMBS, pp. 70–73, 2003.Google Scholar
  51. 51.
    Potse M., Dube B., Richer J., Vinet A., Gulrajani R.M.: A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng. 53(12): 2425–2435, 2006.CrossRefGoogle Scholar
  52. 52.
    Potse M., Dubé B., Vinet A.: Cardiac anisotropy in boundary-element models for the electrocardiogram. Med. Biol. Eng. Comput. 47: 719–729, 2009.CrossRefGoogle Scholar
  53. 53.
    Pullan A.J., Buist M.L., Cheng L.K.: Mathematically modelling the electrical activity of the heart: From cell to body surface and back again. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.CrossRefGoogle Scholar
  54. 54.
    Qu Z., Xie Y., Garfinkel A., Weiss J.N.: T-wave Alternans and Arrhythmogenesis in Cardiac Diseases. Frontiers in Physiology 1(154): 1, 2010.Google Scholar
  55. 55.
    Quarteroni A., Valli A.: Domain decomposition methods for partial differential equations. Numerical Mathematics and Scientific Computation. The Clarendon Press Oxford University Press, 1999.MATHGoogle Scholar
  56. 56.
    Rathinam M., Petzold L.R.: A new look at proper orthogonal decomposition. SIAM Journal on Numerical Analysis 41(5): 1893–1925, 2004.MathSciNetCrossRefGoogle Scholar
  57. 57.
    Roger J.M., McCulloch A.D.: A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Engr. 41(8): 743–757, 1994.CrossRefGoogle Scholar
  58. 58.
    Sachse F.B.: Computational Cardiology: Modeling of Anatomy, Electrophysiology, and Mechanics. Springer, 2004.Google Scholar
  59. 59.
    Skouibine N., Trayanova K., Moore P.: A numerically efficient model for simulation of defibrillation in an active bidomain sheet of myocardium. Math. Biosci. 166(1): 85–100, 2000.MATHCrossRefGoogle Scholar
  60. 60.
    Stetter H.J.: The defect correction principle and discretization methods. Numer. Math. 29: 425–443, 1978.MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Sundnes J., Lines G.T., Cai X., Nielsen B.F., Mardal K.-A., Tveito A.: Computing the electrical activity in the heart. Springer, 2006.Google Scholar
  62. 62.
    Sundnes J., Lines G.T., Mardal K.A., Tveito A.: Multigrid block preconditioning for a coupled system of partial differential equations modeling the electrical activity in the heart. Comput. Methods Biomech. Biomed. Engin. 5(6): 397–409, 2002.CrossRefGoogle Scholar
  63. 63.
    Sundnes J., Lines G.T., MardalK.A., Tveito A.: Multigrid block preconditioning for a coupled system of partial differential equations modeling the electrical activity in the heart. Comput. Methods Biomech. Biomed. Engin. 5(6): 397–409, 2002.Google Scholar
  64. 64.
    Sundnes J., Lines G.T., Tveito A.: Efficient solution of ordinary differential equations modeling electrical activity in cardiac cells. Math. Biosci. 172(2): 55–72, 2001.MathSciNetMATHCrossRefGoogle Scholar
  65. 65.
    Sundnes J., Lines G.T., Tveito A.: An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. Math. Biosci. 194(2): 233–248, 2005.MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Toselli A., Widlund O.: Domain decomposition methods – algorithms and theory, volume 34 of Springer Series in Computational Mathematics. Springer, Berlin, 2005.Google Scholar
  67. 67.
    Trayanova N.: Defibrillation of the heart: insights into mechanisms from modelling studies. Experimental Physiology 91(2): 323–337, 2006.CrossRefGoogle Scholar
  68. 68.
    Trudel M.-C., Dubé B., Potse M., Gulrajani R.M., Leon L.J.: Simulation of qrst integral maps with a membrane-based computer heart model employing parallel processing. IEEE Trans. Biomed. Eng. 51(8): 1319–1329, 2004.CrossRefGoogle Scholar
  69. 69.
    Tung L.: A bi-domain model for describing ischemic myocardial D–C potentials. PhD thesis, MIT, USA, 1978.Google Scholar
  70. 70.
    van Capelle F.H., Durrer D.: Computer simulation of arrhythmias in a network of coupled excitable elements. Circ. Res. 47: 453–466, 1980.Google Scholar
  71. 71.
    Veneroni M.: Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field. Nonlinear Anal. Real World Appl. 10(2): 849–868, 2009.MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Vigmond E.J., Weberdos Santos R., Prassl A.J., Deo M., Plank G.: Solvers for the cardiac bidomain equations. Progr. Biophys. Molec. Biol. 96(1–3): 3–18, 2008.CrossRefGoogle Scholar
  73. 73.
    Zemzemi N.: Étude théorique et numérique de l’activité électrique du coeur: Applications aux électrocardiogrammes. PhD thesis, Université Paris XI, 2009. http://tel.archivesouvertes.fr/tel-00470375/en/.

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Muriel Boulakia
    • 1
  • Miguel A. Fernández
    • 2
  • Jean-Frédéric Gerbeau
    • 2
  • Nejib Zemzemi
    • 3
  1. 1.Laboratoire Jacques-Louis LionsUniversité Pierre et Marie Curie-Paris 6, UMR7598ParisFrance
  2. 2.INRIA Paris-RocquencourtLe Chesnay CedexFrance
  3. 3.INRIA Paris-Rocquencourt and Laboratoire de mathématiques d’OrsayUniversité Paris 11ParisFrance

Personalised recommendations