Skip to main content

Numerical simulation of electrocardiograms

  • Chapter
Book cover Modeling of Physiological Flows

Abstract

This chapter presents a concise overview of various mathematical and numerical problems raised by the simulation of electrocardiograms (ECGs). A model for the propagation of the electrical activation in the heart and in the torso is proposed. Some of its mathematical properties are analyzed. This model is not aimed at reproducing the complex phenomena taking place at the microscopic level. It has been devised to produce realistic healthy ECGs, and some pathological ones, with a reasonable level of complexity. Rather, it relies on various assumptions that are carefully discussed through their impact on the ECGs. The coupling between the heart and the torso is a critical numerical issue which is addressed. In particular, efficient coupling strategies based on explicit algorithms are presented and analyzed. The chapter ends with some preliminary results of a reduced order model based on the Proper Orthogonal Decomposition (POD) method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aehlert B.: ECGs Made Easy. Mosby Jems, Elsevier, third edition, 2006.

    Google Scholar 

  2. Aliev R.R., Panfilov A.V.: Asimple two-variable model of cardiac excitation. Chaos, Solitons & Fractals 3(7): 293–301, 1996.

    Article  Google Scholar 

  3. Austin T.M., Trew M.L., Pullan A.J.: Solving the cardiac bidomain equations for discontinuous conductivities. IEEE Trans. Biomed. Eng. 53(7): 1265–72, 2006.

    Article  Google Scholar 

  4. [4] Beeler G., Reuter H.: Reconstruction of the action potential of ventricular myocardial fibres. J. Physiol. (Lond.) 268: 177–210, 1977.

    Google Scholar 

  5. [5] Bendahmane M., Karlsen K.H.: Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue. Netw. Heterog. Media 1(1): 185–218 (electronic), 2006.

    Article  MathSciNet  MATH  Google Scholar 

  6. [6] Bordas R., Grau V., Burton R.A.B., Hales P., Schneider J.E., Gavaghan D., Kohl P., Rodriguez B.: Integrated approach for the study of anatomical variability in the cardiac purkinje system: from high resolution MRI to electrophysiology simulation. In Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, pp. 6793–6796. IEEE, 2010.

    Google Scholar 

  7. Boulakia M., Cazeau S., Fernández M.A., Gerbeau J.-F., Zemzemi N.: Mathematical modeling of electrocardiograms: a numerical study. Ann. Biomed. Eng. 38(3): 1071–1097, 2010.

    Article  Google Scholar 

  8. [8] Boulakia M., Fernández M.A., Gerbeau J.-F., Zemzemi N.: A coupled system of PDEs and ODEs arising in electrocardiograms modelling. Applied Math. Res. Exp. 2008(abn002): 28, 2008.

    Google Scholar 

  9. Bourgault Y., Coudière Y., Pierre C.: Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology. Nonlinear Anal. Real World Appl. 10(1): 458–482, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  10. [10] Bourgault Y., Ethier M., Le Blanc V.G.: Simulation of electrophysiological waves with an unstructured finite element method. M2AN Math. Model. Numer. Anal. 37(4): 649–661, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  11. Buist M., Pullan A.: Torso coupling techniques for the forward problem of electrocardiography. Ann. Biomed. Eng. 30(10): 1299–1312, 2002.

    Article  Google Scholar 

  12. [12] Chapelle D., Fernández M.A., Gerbeau J.-F., Moireau P., Sainte-Maire J., Zemzemi N.: Numerical simulation of the electromechanical activity of the heart. In N. Ayache, H. Delingette, and M. Sermesant (eds.), Functional Imaging and Modeling of the Heart, volume 5528 of Lecture Notes in Computer Science, pp. 357–365. Springer, 2009.

    Chapter  Google Scholar 

  13. Clayton O., Bernus R.H., Cherry E.M., Dierckx H., Fenton F.H., Mirabella L., Panfilov A.V., Sachse F.B., Seemann G., Zhang H.: Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Progress in Biophysics and Molecular Biology 104(1–3): 22–48, 2011.

    Article  Google Scholar 

  14. Clements J., Nenonen J., Li P.K.J., Horacek B.M.: Activation dynamics in anisotropic cardiac tissue via decoupling. Ann. Biomed. Eng. 32(7): 984–990, 2004.

    Article  Google Scholar 

  15. Colli Franzone P., Pavarino L.F.: A parallel solver for reaction-diffusion systems in computational electrocardiology. Math. Models Methods Appl. Sci. 14(6): 883–911, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  16. Colli Franzone P., Pavarino L.F., Scacchi S., Taccardi B.: Effects of anisotropy and transmural heterogeneity on the T-wave polarity of simulated electrograms. In N. Ayache, H. Delingette, and M. Sermesant (eds,), Functional Imaging and Modeling of the Heart, volume 5528 of Lecture Notes in Computer Science, pp. 513–523. Springer, 2009.

    Chapter  Google Scholar 

  17. Colli Franzone P., Pavarino L.F., Taccardi B.: Simulating patterns of excitation, repolarization and action potential duration with cardiac bidomain and monodomain models. Math. Biosci. 197(1): 35–66, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  18. [18] Colli Franzone P., Savaré G.: Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level. In Evolution equations, semigroups and functional analysis (Milano, 2000), volume 50 of Progr. Nonlinear Differential Equations Appl., pp. 49–78. Birkhäuser, Basel, 2002.

    Google Scholar 

  19. Djabella K., Sorine M.: Differential model of the excitation-contraction coupling in a cardiac cell for multicycle simulations. In EMBEC’05, volume 11, pp. 4185–4190, Prague, 2005.

    Google Scholar 

  20. Dumas L., El Alaoui L.: How genetic algorithms can improve a pacemaker efficiency. In GECCO ’07: Proceedings of the 2007 GECCO conference companion on Genetic and evolutionary computation, pp. 2681–2686, New York, NY, USA, 2007. ACM.

    Google Scholar 

  21. [21] Ebrard G., Fernández M.A., Gerbeau J.-F., Rossi F., Zemzemi N.: From intracardiac electrograms to electrocardiograms. models and metamodels. In N. Ayache, H. Delingette, and M. Sermesant (eds.), Functional Imaging and Modeling of the Heart, volume 5528 of Lecture Notes in Computer Science, pp. 524–533. Springer, 2009.

    Chapter  Google Scholar 

  22. Efimov I.R., Gray R.A., Roth B.J.: Virtual electrodes and deexcitation: new insights into fibrillation induction and defibrillation. J. Cardiovasc. Electrophysiol. 11(3): 339–353, 2000.

    Article  Google Scholar 

  23. Ethier M., Bourgault Y.: Semi-implicit time-discretization schemes for the bidomain model. SIAM J. Numer. Anal. 46(5): 2443–2468, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  24. Fenton F., Karma A.: Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. Chaos 8(1): 20–47, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  25. Fernández M.A., Zemzemi N.: Decoupled time-marching schemes in computational cardiac electrophysiology and ECG numerical simulation. Math. Biosci. 226(1): 58–75, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  26. FitzHugh R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1: 445–465, 1961.

    Article  Google Scholar 

  27. Goldberger A.L.: Clinical Electrocardiography: A Simplified Approach. Mosby-Elsevier, 7th edition, 2006.

    Google Scholar 

  28. Gulrajani R.M.: Models of the electrical activity of the heart and computer simulation of the electrocardiogram. Crit. Rev. Biomed. Eng. 16(1): 1–6, 1988.

    Google Scholar 

  29. Hooke N., Henriquez C.S., Lanzkron P., Rose D.: Linear algebraic transformations of the bidomain equations: implications for numerical methods. Math. Biosci. 120(2): 127–145, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  30. Huiskamp G.: Simulation of depolarization in a membrane-equations-based model of the anisotropic ventricle. IEEE Trans. Biomed. Eng. 5045(7): 847–855, 1998.

    Article  Google Scholar 

  31. Keener J. P., Bogar K.: A numerical method for the solution of the bidomain equations in cardiac tissue. Chaos 8(1): 234–241, 1998.

    Article  MATH  Google Scholar 

  32. Keldermann R.H., Nash M.P., Panfilov A.V.: Modeling cardiac mechano-electrical feedback using reaction-diffusion-mechanics systems. Physica D: Nonlinear Phenomena 238(11–12): 1000–1007, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  33. Keller D.U.J., Seemann G., Weiss D.L., Farina D., Zehelein J., Dössel O.: Computer based modeling of the congenital long-qt 2 syndrome in the visible man torso: From genes to ECG. In Proceedings of the 29th Annual International Conference of the IEEE EMBS, pp. 1410–1413, 2007.

    Google Scholar 

  34. Kerckhoffs R.C.P., Healy S.N., Usyk T.P., McCulloch A.D.: Computational methods for cardiac electromechanics. Proc. IEEE 94(4): 769–783, 2006.

    Article  Google Scholar 

  35. Krassowska W., Neu J.C.: Effective boundary conditions for syncitial tissues. IEEE Trans. Biomed. Eng. 41(2): 143–150, 1994.

    Article  Google Scholar 

  36. Kunisch K., Volkwein S.: Galerkin proper orthogonal decomposition methods for parabolic problems. Numerische Mathematik 90(1): 117–148, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  37. Lab M.J., Taggart P., Sachs F.: Mechano-electric feedback. Cardiovasc. Res. 32: 1–2, 1996.

    Google Scholar 

  38. Lines G.T., Buist M.L., Grottum P., Pullan A.J., Sundnes J., Tveito A.: Mathematical models and numerical methods for the forward problem in cardiac electrophysiology. Comput. Visual. Sci. 5(4): 215–239, 2003.

    Article  MATH  Google Scholar 

  39. Lines G.T., Grøttum P., Tveito A.: Modeling the electrical activity of the heart: a bidomain model of the ventricles embedded in a torso. Comput. Vis. Sci. 5(4): 195–213, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  40. Luo C., Rudy Y.: A dynamic model of the cardiac ventricular action potential. i. simulations of ionic currents and concentration changes. Circ. Res. 74(6): 1071–1096, 1994.

    Article  Google Scholar 

  41. Luo C.H., Rudy Y.: A model of the ventricular cardiac action potential. depolarisation, repolarisation, and their interaction. Circ. Res. 68(6): 1501–1526, 1991.

    Article  Google Scholar 

  42. Malmivuo J., Plonsey R.: Bioelectromagnetism. Principles and applications of bioelectric and biomagnetic fields. Oxford University Press, New York, 1995.

    Google Scholar 

  43. Mitchell C.C., Schaeffer D.G.: A two-current model for the dynamics of cardiac membrane. Bulletin Math. Bio. 65: 767–793, 2003.

    Article  Google Scholar 

  44. Murillo M., Cai X.-C.: A fully implicit parallel algorithm for simulating the non-linear electrical activity of the heart. Numer. Linear Algebra Appl. 11(2-3): 261–277, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  45. Nagumo J., Arimoto S., Yoshizawa S.: An active pulse transmission line simulating nerve axon. Proceedings of the IRE 50(10): 2061–2070, 1962.

    Article  Google Scholar 

  46. Neu J.C., Krassowska W.: Homogenization of syncytial tissues. Crit. Rev. Biomed. Eng. 21(2): 137–199, 1993.

    Google Scholar 

  47. Nickerson D., Smith N.P., Hunter P.: New developments in a strongly coupled cardiac electromechanical model. Europace 7 Suppl 2: 118–127, 2005.

    Article  Google Scholar 

  48. Noble D., Varghese A., Kohl P., Noble P.: Improved guinea-pig ventricular cell model incorporating a diadic space, ikr and iks, and length- and tension-dependent processes. Can. J. Cardiol. 14(1): 123–134, 1998.

    Google Scholar 

  49. Pennacchio M., Savaré G., Colli Franzone P.: Multiscale modeling for the bioelectric activity of the heart. SIAM Journal on Mathematical Analysis 37(4): 1333–1370, 2005.

    Article  MathSciNet  Google Scholar 

  50. Potse M., Dubé B., Gulrajani M.: ECG simulations with realistic human membrane, heart, and torso models. In Proceedings of the 25th Annual Intemational Conference of the IEEE EMBS, pp. 70–73, 2003.

    Google Scholar 

  51. Potse M., Dube B., Richer J., Vinet A., Gulrajani R.M.: A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans. Biomed. Eng. 53(12): 2425–2435, 2006.

    Article  Google Scholar 

  52. Potse M., Dubé B., Vinet A.: Cardiac anisotropy in boundary-element models for the electrocardiogram. Med. Biol. Eng. Comput. 47: 719–729, 2009.

    Article  Google Scholar 

  53. Pullan A.J., Buist M.L., Cheng L.K.: Mathematically modelling the electrical activity of the heart: From cell to body surface and back again. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.

    Book  Google Scholar 

  54. Qu Z., Xie Y., Garfinkel A., Weiss J.N.: T-wave Alternans and Arrhythmogenesis in Cardiac Diseases. Frontiers in Physiology 1(154): 1, 2010.

    Google Scholar 

  55. Quarteroni A., Valli A.: Domain decomposition methods for partial differential equations. Numerical Mathematics and Scientific Computation. The Clarendon Press Oxford University Press, 1999.

    MATH  Google Scholar 

  56. Rathinam M., Petzold L.R.: A new look at proper orthogonal decomposition. SIAM Journal on Numerical Analysis 41(5): 1893–1925, 2004.

    Article  MathSciNet  Google Scholar 

  57. Roger J.M., McCulloch A.D.: A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Engr. 41(8): 743–757, 1994.

    Article  Google Scholar 

  58. Sachse F.B.: Computational Cardiology: Modeling of Anatomy, Electrophysiology, and Mechanics. Springer, 2004.

    Google Scholar 

  59. Skouibine N., Trayanova K., Moore P.: A numerically efficient model for simulation of defibrillation in an active bidomain sheet of myocardium. Math. Biosci. 166(1): 85–100, 2000.

    Article  MATH  Google Scholar 

  60. Stetter H.J.: The defect correction principle and discretization methods. Numer. Math. 29: 425–443, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  61. Sundnes J., Lines G.T., Cai X., Nielsen B.F., Mardal K.-A., Tveito A.: Computing the electrical activity in the heart. Springer, 2006.

    Google Scholar 

  62. Sundnes J., Lines G.T., Mardal K.A., Tveito A.: Multigrid block preconditioning for a coupled system of partial differential equations modeling the electrical activity in the heart. Comput. Methods Biomech. Biomed. Engin. 5(6): 397–409, 2002.

    Article  Google Scholar 

  63. Sundnes J., Lines G.T., MardalK.A., Tveito A.: Multigrid block preconditioning for a coupled system of partial differential equations modeling the electrical activity in the heart. Comput. Methods Biomech. Biomed. Engin. 5(6): 397–409, 2002.

    Google Scholar 

  64. Sundnes J., Lines G.T., Tveito A.: Efficient solution of ordinary differential equations modeling electrical activity in cardiac cells. Math. Biosci. 172(2): 55–72, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  65. Sundnes J., Lines G.T., Tveito A.: An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. Math. Biosci. 194(2): 233–248, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  66. Toselli A., Widlund O.: Domain decomposition methods – algorithms and theory, volume 34 of Springer Series in Computational Mathematics. Springer, Berlin, 2005.

    Google Scholar 

  67. Trayanova N.: Defibrillation of the heart: insights into mechanisms from modelling studies. Experimental Physiology 91(2): 323–337, 2006.

    Article  Google Scholar 

  68. Trudel M.-C., Dubé B., Potse M., Gulrajani R.M., Leon L.J.: Simulation of qrst integral maps with a membrane-based computer heart model employing parallel processing. IEEE Trans. Biomed. Eng. 51(8): 1319–1329, 2004.

    Article  Google Scholar 

  69. Tung L.: A bi-domain model for describing ischemic myocardial D–C potentials. PhD thesis, MIT, USA, 1978.

    Google Scholar 

  70. van Capelle F.H., Durrer D.: Computer simulation of arrhythmias in a network of coupled excitable elements. Circ. Res. 47: 453–466, 1980.

    Google Scholar 

  71. Veneroni M.: Reaction-diffusion systems for the macroscopic bidomain model of the cardiac electric field. Nonlinear Anal. Real World Appl. 10(2): 849–868, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  72. Vigmond E.J., Weberdos Santos R., Prassl A.J., Deo M., Plank G.: Solvers for the cardiac bidomain equations. Progr. Biophys. Molec. Biol. 96(1–3): 3–18, 2008.

    Article  Google Scholar 

  73. Zemzemi N.: Étude théorique et numérique de l’activité électrique du coeur: Applications aux électrocardiogrammes. PhD thesis, Université Paris XI, 2009. http://tel.archivesouvertes.fr/tel-00470375/en/.

Download references

Acknowledgements

The authors wish to thank Michel Sorine for many fruitful discussions, and Elisa Schenone for the simulations shown in Figs. 4.12 and 4.13.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Boulakia, M., Fernández, M.A., Gerbeau, JF., Zemzemi, N. (2012). Numerical simulation of electrocardiograms. In: Ambrosi, D., Quarteroni, A., Rozza, G. (eds) Modeling of Physiological Flows. MS&A — Modeling, Simulation and Applications, vol 5. Springer, Milano. https://doi.org/10.1007/978-88-470-1935-5_4

Download citation

Publish with us

Policies and ethics