Skip to main content

Simplified blood flow model with discontinuous vessel properties: Analysis and exact solutions

  • Chapter
Modeling of Physiological Flows

Part of the book series: MS&A — Modeling, Simulation and Applications ((MS&A,volume 5))

Abstract

We formulate a simplified one-dimensional time-dependent non-linear mathematical model for blood flow in vessels with discontinuous material properties. The resulting 3 × 3 hyperbolic system is analysed and the associated Riemann problem is solved exactly, including tube collapse. Our exact solutions constitute useful reference solutions for assessing the performance of numerical methods intended for simulating more general situations. In addition the presented model may be a useful starting point for numerical calculations involving rapid and discontinuous material properties variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alastruey J., Parker K.H., Peiro J., Byrd S.M. and Sherwin S.J.: Modelling the circle of Willis to assess the effects of anatomical variations and occlusions on cerebral flows. Journal of Biomechanics 40: 1794–1805, 2007.

    Article  Google Scholar 

  2. Asay B.W., Son S.F. and Bdzil J.B.: The role of gas permeation in convective burning. Int. J. Multiphase Flow 23(5): 923–952, 1996.

    Article  Google Scholar 

  3. Brook B.S., Falle S.A.E.G. and Pedley T.J.: Numerical solutions for unsteady gravity-driven flows in collapsible tubes: evolution and roll-wave instability of a steady state. Journal of Fluid Mechanics 396: 223–256, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  4. Canic S., Hartley C.J., Rosenstrauch D., Tamba J., Guidoboni G. and Mikelic A.: Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics, and experimental validation. Annals of Biomedical Engineering. 34(4): 575–592, 2006.

    Article  Google Scholar 

  5. Dalmaso G., LeFloch P.L. and Murat F.: Definition and weak stability of non-conservative products. J. Math Pures Appl. 74: 483–548, 1995.

    MathSciNet  Google Scholar 

  6. Embid P. and Baer M.: Mathematical analysis of a two-phase continuum mixture theory. Continuum Mech. Thermodyn. 4: 279–312, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  7. Formaggia L., Lamponi D. and Quarteroni A.: One-dimensional models for blood flow in arteries. Journal of Engineering Mathematics 47: 251–276, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  8. Fullana M.J. and Zaleski S.: A branched one-dimensional model of vessel networks. Journal of Fluid Mechanics 621: 183–204, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  9. Greenberg J.M., LeRoux A.Y., Barailles R. and Noussair A.: Analysis and approximation of conservation laws with source terms. SIAM J. Numerical Analysis 34: 1980–2007, 1997.

    Article  MATH  Google Scholar 

  10. Isaacson E. and Temple B.: Nonlinear resonance in systems of conservation-laws, SIAM J Appl. Math. 52(5): 1260–1278, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  11. Jeffrey A.: Quasilinear Hyperbolic Systems and Waves. Pitman, London, 1976.

    MATH  Google Scholar 

  12. Kamm R.D. and Shapiro A.H.: Unsteady flow in a collapsible tube subjected to external pressure or body forces. Journal of Fluid Mechanics 95: 1–78, 1979.

    Article  MATH  Google Scholar 

  13. LeVeque R.J.: Balancing source terms and flux gradients in high-resolution Godunov methods. Journal of Computational Physics 146: 346–365, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu T.P.: Nonlinear resonance for quasi-linear hyperbolic equation. J. Math. Phys. 28(11): 2593–2602, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  15. Marchandise E. and Flaud P.: Accurate modelling of unsteady flows in collapsible tubes. Computer Methods in Biomechanics and Biomedical Engineering 13(2): 279–290, 2010.

    Article  Google Scholar 

  16. Parés C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM Journal on Numerical Analysis 44: 300–321, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  17. Pedley T.J.: The fluid dynamics of large blood vessels. Cambridge University Press, 1980.

    Book  Google Scholar 

  18. Quarteroni A., Tuveri M. and Veneziani A.: Computational vascular fluid dynamics: problems, models and methods. Survey article. Comput. Visual Sci. 2: 163–197, 2000.

    Article  MATH  Google Scholar 

  19. Schwendeman D.W., Wahle C.W. and Kapila A.K.: The Riemann problem and a highresolution Godunov method for a model of compressible two-phase flow. J. Comput. Phys. 212: 490–526, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  20. Sherwin S.J., Formaggia L., Peiro J. and Franke V.: Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. International Journal for Numerical Methods in Fluids 43: 673–700, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  21. Toro E.F.: Shock capturing methods for free surface shallow water flows. Wiley and Sons, 2001.

    Google Scholar 

  22. Toro E.F.: Riemann solvers and numerical methods for fluid dynamics. Third edition, Springer-Verlag, 2009.

    Book  MATH  Google Scholar 

  23. Umscheid T. and Stelter W.J.: Time-related alterations in shape, position, and structure of self-expanding modular aortic stent grafts: a 4-year single-centre follow up. J. Endovasc. Surg. 6: 17–32, 1999.

    Article  Google Scholar 

  24. Zamboni P., Lanzara S., Mascoli F., Caggiati A., Liboni A.: Inflammation in venous disease. International Angiology, ProQuest Science Journals 27(5): 361–369, 2008.

    Google Scholar 

  25. Zamboni P., Galeotti R., Menegatti E., Malagoni A.M., Tacconi G., Dall’Ara S., Bartolomei I., Salvi F.: Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 80: 392–399, 2009.

    Article  Google Scholar 

Download references

Acknowledgements

This research has been partially funded by the Italian Ministry of University and Research (MIUR) under the project PRIN 2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleuterio F. Toro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Toro, E.F., Siviglia, A. (2012). Simplified blood flow model with discontinuous vessel properties: Analysis and exact solutions. In: Ambrosi, D., Quarteroni, A., Rozza, G. (eds) Modeling of Physiological Flows. MS&A — Modeling, Simulation and Applications, vol 5. Springer, Milano. https://doi.org/10.1007/978-88-470-1935-5_2

Download citation

Publish with us

Policies and ethics