Advertisement

Multiscale computational analysis of degradable polymers

  • Paolo Zunino
  • Simone Vesentini
  • Azzurra Porpora
  • Joao S. Soares
  • Alfonso Gautieri
  • Alberto Redaelli
Part of the MS&A — Modeling, Simulation and Applications book series (MS&A, volume 5)

Abstract

Degradable materials have found a wide variety of applications in the biomedical field ranging from sutures, pins and screws for orthopedic surgery, local drug delivery, tissue engineering scaffolds, and endovascular stents. Polymer degradation is the irreversible chain scission process that breaks polymer chains down to oligomers and, finally, to monomers. These changes, which take place at the molecular scale, propagate through the space/time scales and not only affect the capacity of the polymer to release drugs, bu also hamper the overall mechanical behaviour of the device, whose spatial scale is denoted as macroscale. A bottom-up multiscale analysis is applied to model the degradation mechanism which takes place in PLA matrices. The macroscale model is based on diffusion-reaction equations for hydrolytic polymer degradation and erosion while the microscale model is based on atomistic simulations to predict the water diffusion as a function of the swelling degree of the PLA matrix. The diffusion coefficients are then passed to the macroscale model. In conclusion, the proposed multiscale analysis is capable to predict the evolution with time of several properties of water/PLA mixtures, according to the change of relevant indicators such as the extent of degradation and erosion of the PLA matrix.

Keywords

Average Degree Partial Density Atomistic Simulation Polymer Bulk Polymer Degradation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We acknowledge the Italian Institute of Technology, with the Grant: Models and methods for degradable materials, and the European Research Council Advanced Grant: MathcardMathematical Modelling and Simulation of the Cardiovascular System, Project ERC 2008 AdG 227058. JSS thanks the Portuguese Fundaçao para a Ciêcia e Tecnologia for its support, Grant SFRH/BPD/63119/2009.

References

  1. 1.
    Agrawal C.M., Ray R.B.: Biodegradable polymeric scaffolds for musculoskeletal tissue engineering, J. Biomed. Mater. Res. 55: 141–150, 2001.CrossRefGoogle Scholar
  2. 2.
    Ali S.A., Doherty P.J., Williams D.F.: Mechanisms of polymer degradation in implantable devices. 2. Poly(dl-lactic acid), J. Biomed. Mater. Res. 27: 1409–1418, 1993.CrossRefGoogle Scholar
  3. 3.
    Ali S.A., Zhong S.P., Doherty P.J., Williams D.F.: Mechanisms of polymer degradation in implantable devices. 1. Poly(caprolactone), Biomaterials 14: 648–656, 1993.CrossRefGoogle Scholar
  4. 4.
    Ballauff M., Wolf B.A.: Degradation of chain molecules .1. Exact solution of the kinetic-equations, Macromolecules 14: 654–658, 1981.CrossRefGoogle Scholar
  5. 5.
    Batycky R.P., Hanes J., Langer R., Edwards D.A.: A theoretical model of erosion and macro-molecular drug release from biodegrading microspheres, J. Pharm. Sci. 86: 1464–1477, 1997.CrossRefGoogle Scholar
  6. 6.
    Bose S.M., Git Y.: Mathematical modelling and computer simulation of linear polymer degradation: Simple scissions, Macromol. Theor. Simul. 13: 453–473, 2004.CrossRefGoogle Scholar
  7. 7.
    Burkersroda F.V., Schedl L., Gopferich A.: Why degradable polymers undergo surface erosion or bulk erosion, Biomaterials 23: 4221–4231, 2002.CrossRefGoogle Scholar
  8. 8.
    Deuflhard S.: A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting, Numer. Math. 22: 289–315, 1974.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Emsley A.M., Heywood R.J.: Computer modeling of the degradation of linear-polymers, Polym. Degrad. Stabil. 49: 145–149, 1995.CrossRefGoogle Scholar
  10. 10.
    Entrialgo-Castano M., Lendlein A., et al.: Molecular modeling investigations of dry and two water-swollen states of biodegradable polymers. Advanced Engineering Materials 8(5): 434–439, 2008.CrossRefGoogle Scholar
  11. 11.
    A. Gautieri, Ionita M., et al.: Computer-Aided Molecular Modeling and experimental validation of water permeability properties biosynthetic materials. Journal of Computational and Theoretical Nanoscience 7: 1–7, 2010.CrossRefGoogle Scholar
  12. 12.
    Gopferich A.: Polymer degradation and erosion: Mechanisms and applications, Eur. J. Pharm. Biopharm. 4: 1–11, 1996.Google Scholar
  13. 13.
    Gopferich A.: Mechanisms of polymer degradation and elimination, in: A.J. Domb, J. Kost, D.M. Wiseman (eds.), Handbook of biodegradable polymers, Drug targeting and delivery, Harwood Academic Publishers, Australia, 1997, pp. 451–471.Google Scholar
  14. 14.
    Gopferich A., Langer R.: Modeling polymer erosion, Macromolecules 26: 4105–4112, 1993.CrossRefGoogle Scholar
  15. 15.
    Hairer E., Wanner G.: Solving ordinary differential equations II, Springer Series in Computational Mathematics 14, Springer-Verlag, Berlin, 2nd ed., 1996.Google Scholar
  16. 16.
    Hayashi T.: Biodegradable polymers for biomedical uses, Prog. Polym. Sci. 19: 663–702, 1994.CrossRefGoogle Scholar
  17. 17.
    Heller J., Baker R.W.: Theory and practice of controlled drug delivery from bioerodible polymers, in: R.W. Baker (ed.), Controlled release of bioactive materials, Academic Press, New York, 1980, pp. 1–18.Google Scholar
  18. 18.
    Hofmann, D., L. Fritz, et al.: Detailed-atomistic molecular modeling of small molecule diffii-sion and solution processes in polymeric membrane materials. Macromolecular Theory and Simulations 9(6): 293–327, 2000.CrossRefGoogle Scholar
  19. 19.
    Ionita M., Silvestri D., et al.: Diffusion of small molecules in bioartificial membranes for clinical use: molecular modelling and laboratory investigation. Desalination 200(1–3): 157–159, 2006.CrossRefGoogle Scholar
  20. 20.
    Joshi A., Himmelstein K.J.: Dynamics of controlled release from bioerodible matrices, J. Control. Release 15: 95–104, 1991.CrossRefGoogle Scholar
  21. 21.
    Kotliar A.M., Podgor S.: Evaluation of molecular size distributions and molecular weight averages resulting from random crosslinking and chain-scission processes, J. Polym. Sci. 55: 423–436, 1961.CrossRefGoogle Scholar
  22. 22.
    Kuhn W.: The kinetics of the decomposition of high molecular chains, Ber. Deut. Chem. Ges. 63: 1503–1509, 1930.CrossRefGoogle Scholar
  23. 23.
    Langer R.: Drug delivery and targeting, Nature 392: 5–10, 1998.Google Scholar
  24. 24.
    Laufman H., Rubel T.: Synthetic absorable sutures, Surg. Gynecol. Obstet. 145: 597–608, 1977.Google Scholar
  25. 25.
    Lee P.I.: Diffusional release of a solute from a polymeric matrix - approximate analytical solutions, Journal of Membrane Science 7: 255–275, 1980.CrossRefGoogle Scholar
  26. 26.
    Lemaire V., Belair J., Hildgen P.: Structural modeling of drug release from biodegradable porous matrices based on a combined diffusion/erosion process, Int. J. Pharm. 258: 95–107, 2003.CrossRefGoogle Scholar
  27. 27.
    Li S.M., McCarthy S.: Further investigations on the hydrolytic degradation of poly(dl-lactide), Biomaterials 20: 35–44, 1999.CrossRefGoogle Scholar
  28. 28.
    Li S., Garreau H., Vert M.: Structure-property relationships in the case of degradation of massive poly(-hydroxy acids) in aqueous media - part 3: Influence of the morphology of poly(l-lactic acid), Journal of Materials Science: Materials in Medicine S: 198–206, 1990.CrossRefGoogle Scholar
  29. 29.
    Li S.M., Vert M.: Morphological-changes resulting from the hydrolytic degradation of stere-ocopolymers derived from l-lactides and dl-lactides, Macromolecules 27: 3107–3110, 1994.CrossRefGoogle Scholar
  30. 30.
    Miller R.A., Brady J.M., Cutright D.E.: Degradation rates of oral resorbable implants (poly-lactates and polyglycolates): Rate modification with changes in pla/pga copolymer ratios, J. Biomed. Mater. Res. 11: 711–719, 1977.CrossRefGoogle Scholar
  31. 31.
    Montroll E.W., Simha R.: Theory of depolymerization of long chain molecules, J. Chem. Phys. 8: 721–727, 1940.CrossRefGoogle Scholar
  32. 32.
    Moore J., Soares J., Rajagopal K.: Biodegradable stents: Biomechanical modeling challenges and opportunities, Cardiovascular Engineering and Technology 1: 52–65, 2010.CrossRefGoogle Scholar
  33. 33.
    Nguyen T.Q.: Kinetics of mechanochemical degradation by gel permeation chromatography, Polym. Degrad. Stabil. 46: 99–111, 1994.CrossRefGoogle Scholar
  34. 34.
    Nguyen T.Q., Kausch H.H.: Gpc data interpretation in mechanochemical polymer degradation, Int. J. Polym. Anal. Ch. 4: 447–470, 1998.CrossRefGoogle Scholar
  35. 35.
    Ottenbrite R.M., Albertsson A.C., Scott G.: Discussion on degradation terminology, in: M. Vert, J. Feijen, A.C. Albertsson, G. Scott, E. Chiellini (eds.), Biodegradable polymers and plastics, The Royal Society of Chemisty, Cambridge, 1992, pp. 73–92.Google Scholar
  36. 36.
    Prabhu S., Hossainy S.: Modeling of degradation and drug release from a biodegradable stent coating, J. Biomed. Mater. Res. A 80A (2007) 732–741.CrossRefGoogle Scholar
  37. 37.
    Pietrzak W.S., Sarver D.R., Verstynen M.L.: Bioabsorbable polymer science for the practicing surgeon, J. Craniofac. Surg. 8: 87–91, 1997.CrossRefGoogle Scholar
  38. 38.
    Pistner H., Bendix D.R., Muhling J., Reuther J.F.: Poly(l-lactide) - a long-term degradation study in vivo .3. Analytical characterization, Biomaterials 14: 291–298, 1993.CrossRefGoogle Scholar
  39. 39.
    Quarteroni A., Valli A.: Numerical approximation of partial differential equations, Springer Series in Computational Mathematics 23, Springer-Verlag, Berlin, 1994.Google Scholar
  40. 40.
    Siepmann J., Gopferich A.: Mathematical modeling of bioerodible, polymeric drug delivery systems, Adv. Drug Deliver. Rev. 48 (2001): 229–247.CrossRefGoogle Scholar
  41. 41.
    Siparsky G.L., Voorhees K.J., Dorgan J.R., Schilling K.: Water transport in polylactic acid (PLA), PLA/polycaprolactone copolymers, and PLA polyethylene glycol blends. Journal of Environmental Polymer Degradation 5(3): 125–36, 1997.Google Scholar
  42. 42.
    Soares J.S.: Bioabsorbable polymeric drug-eluting endovascular stents: A clinical review, Minerva Biotecnologica 21: 217–230, 2009.MathSciNetGoogle Scholar
  43. 43.
    Soares J.S., Zunino P.: A mixture model for water uptake, degradation, erosion, and drug release from polydisperse polymeric networks, Biomaterials 31: 3032–3042, 2010.CrossRefGoogle Scholar
  44. 44.
    H. Sun,: COMPASS: An ab initio force-field optimized for condensed-phase applications — Overview with details on alkane and benzene compounds. Journal Of Physical Chemistry B 102(38): 7338–7364, 1998.CrossRefGoogle Scholar
  45. 45.
    Tamada J.A., Langer R.: Erosion kinetics of hydrolytically degradable polymers, Proc. Natl. Acad. Sci. USA 90: 552–556, 1993.CrossRefGoogle Scholar
  46. 46.
    Thombre A.G.: Theoretical aspects of polymer biodegradation: Mathematical modeling of drug release and acid-catalyzed poly(otho-ester) biodegradation, in: M. Vert, J. Feijen, A.C. Albertsson, G. Scott, E. Chiellini (eds.), Biodegradable polymers and plastics, The Royal Society of Chemisty, Cambridge, 1992, pp. 214–225.Google Scholar
  47. 47.
    Thombre A.G., Himmelstein K.J.: A simultaneous transport-reaction model for controlled drug delivery from catalyzed bioerodible polymer matrices, AIChE Journal 31: 759–766, 1985.CrossRefGoogle Scholar
  48. 48.
    Vert M., Li S., Garreau H., Mauduit J., Boustta M., Schwach G., Engel R., Coudane J.: Complexity of the hydrolytic degradation of aliphatic polyesters, Angew. Markomol. Chemie 247: 239–253, 1997.CrossRefGoogle Scholar
  49. 49.
    Wu X.S., Wang N.: Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part ii: Biodegradation. J. Biomater. Sci. Polym. Ed. 12: 21–34, 2001.CrossRefGoogle Scholar
  50. 50.
    Zygourakis K.: Development and temporal evolution of erosion fronts in bioerodible controlled release devices, Chemical Engineering Science 45: 2359–2366, 1990.CrossRefGoogle Scholar
  51. 51.
    Harvey M.J., Giupponi G., De Fabritiis G.: ACEMD: Accelerating biomolecular dynamics in the microsecond time scale, Journal of Chemical Theory and Computation 5: 1632–1639, 2009.CrossRefGoogle Scholar
  52. 52.
    Stone J.E., Phillips J.C., Freddolino P.L., Hardy D.J., Trabuco L.G., Schulten K.: Accelerating molecular modeling applications with graphics processors, Journal of Computational Chemistry 28: 2618–2640, 2007.CrossRefGoogle Scholar
  53. 53.
    Friedrichs M.S., Eastman P., Vaidyanathan V., Houston M., Legrand S., Beberg A.L., Ensign D.L., Bruns C.M., Pande V.S.: Accelerating molecular dynamic simulation on graphics processing units, Journal of Computational Chemistry 30: 864–872, 2009.CrossRefGoogle Scholar
  54. 54.
    Yuval G., Amnon A., Shlomo A.: Anomalous Diffusion on Percolating Clusters. Phys Rev Lett. 50: 77–80, 1983.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Paolo Zunino
    • 1
  • Simone Vesentini
    • 2
  • Azzurra Porpora
    • 1
  • Joao S. Soares
    • 3
  • Alfonso Gautieri
    • 2
  • Alberto Redaelli
    • 2
  1. 1.MOX, Department of MathematicsPolitecnico di MilanoMilanoItaly
  2. 2.Department of BioengineeringPolitecnico di MilanoMilanoItaly
  3. 3.CEMAT — Center for Mathematics and its Applications, Deparment of MathematicsInstituto Superior Técnico/UTLMilanoPortugal

Personalised recommendations