Advertisement

Geometric Calculus and Geometry Foundations in Peano

  • Paolo Freguglia

Abstract

First, Peano’s geometrical calculus theory is a general theory which is of intrinsic mathematical interest and which is also applied to mechanics and to physics. Peano’s contributions, which come from an elaboration of Grassmann’s ideas, consist in an Euclidean interpretation of relative concepts. Moreover, in this context, Peano proves important fundamental theorems of projective geometry. For this reason, Peano’s geometrical calculus has an implicit foundational interest. In our opinion, the protophysical role of Euclidean geometry in Peano’s works is essential and decisive. He distinguishes position geometry from Euclidean geometry, and from a theoretical point of view, it is appropriate. In his ‘Sui fondamenti della geometria’ the congruence theory is well determined and regulated. Classical geometry constitutes the crucial model for the study of the foundations of geometry. Even Hilbert, deep down, takes Euclid into account20. During this period, we have many proposals of systems with different essential or primitive notions and axioms. Hence, we can observe “equivalent theories” for the foundation of elementary geometry, and in this way we have a “theoretical relativism” regarding the choice of primitive elements and fundamental axioms. This is epistemologically and historiographically21 very important22.

Keywords

Projective Geometry Geometrical Formation Minimum System Vector Calculus Congruence Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Grassmann (1862), 415; (1896), 11–12.Google Scholar
  2. 2.
    The Genocchi-Bellavitis letters are analyzed in G. Canepa, P. Freguglia (1991), 211–219.Google Scholar
  3. 3.
    C. Burali-Forti (1926), 5–6.Google Scholar
  4. 4.
    Peano (1888a), 30.Google Scholar
  5. 5.
    Peano (1888a), 107.Google Scholar
  6. 6.
    Peano (1888a), 110–111.Google Scholar
  7. 7.
    G. Bellavitis (1854), 13–85.Google Scholar
  8. 8.
    Peano (1888a), 47.Google Scholar
  9. 9.
    Peano (1888a), 47: “Supposto ABC non nullo, la condizione necessaria e sufficiente affinchè i tre punti A′B′C′ siano in linea retta, ossia A′B′C′ = 0, è l’annullarsi del coefficiente di ABC. Dunque se i punti A′B′C′, che stanno sui lati BC, CA, AB del triangolo ABC sono in linea retta, si ha \( \frac{{BA'}} {{A'C}} \cdot \frac{{CB'}} {{B'A}}\frac{{AC'}} {{C'B}} = - 1 \) e vice versa.”Google Scholar
  10. 10.
    Peano (1888a), 92.Google Scholar
  11. 11.
    Peano (1888a), 95.Google Scholar
  12. 12.
    C. Burali-Forti, R. Marcolongo (1909), 27–45.Google Scholar
  13. 13.
    C. Burali-Forti, R. Marcolongo (1912), IX (footnote 4).Google Scholar
  14. 15.
    See e. g. M. Pieri (1900a); (1901a), 367–404; (1908a), 345–450.Google Scholar
  15. 16.
    D. Palladino, § 5 Appendix, in M. Borga, P. Freguglia, D. Palladino (1985), 244–250.Google Scholar
  16. 17.
    G. Veronese (1891), Parte I, Libro I, Capitolo I, § 1, 209: “Oss. emp. Alla presenza dei corpi fuori di noi, che ci appariscono per mezzo dei sensi, specialmente per mezzo della vista e del tatto, è collegata l’idea di ciò che li contiene, e, si chiama ambiente esterno o spazio intuitivo, nel quale i corpi occupano ciscuno un determinato posto o luogo.” See also P. Cantù, Giuseppe Veronese e i fondamenti della geometria, Milano, Unicopli, 1999.Google Scholar
  17. 18.
    G. Veronese (1891), 13–14: “Data una cosa A determinata, se non è stabilito che A è il gruppo di tutte le cose possibili che vogliamo considerare, possiamo pensarne un’altra non contenuta in A (vale a dire fuori di A) e indipendente da A.”Google Scholar
  18. 19.
    G. Peano (1892n), Review G. Veronese (1891), 144: “Data una classe A, se essa non contiene tutti gli oggetti, allora essa non contiene tutti gli oggetti”. Actually in this review Peano blasts the Veronese’s treatise.Google Scholar
  19. 20.
    Cf. U. Bottazzini (2000), 123–148.Google Scholar
  20. 22.
    See V. Benci, P. Freguglia, Modelli e realtà: una riflessione sulle nozioni di spazio e di tempo, Bollati Boringhieri, Torino, 2011.Google Scholar

Copyright information

© Springer-Verlag Italia 2011

Authors and Affiliations

  • Paolo Freguglia
    • 1
  1. 1.Department of Pure and Applied MathematicsUniversity of L’ AquilaItaly

Personalised recommendations