Advertisement

Some Contributions of Peano to Analysis in the Light of the Work of Belgian Mathematicians

  • Jean Mawhin

Abstract

The period of the main original contributions of Giuseppe Peano (1858–1932) to analysis goes from 1884 till 1900, and his work deals mostly with a critical analysis of the foundations of differential and integral calculus and with the fundamental theory of ordinary differential equations. During this period, the main analysts in Belgium were Louis-Philippe Gilbert (1832–1892) and his successor Charles-Jean de La Vallée Poussin (1866–1962), at the Université Catholique de Louvain, and Paul Mansion (1844–1919) at the Université de Gand. At the Université de Liège, Eugène Catalan (1814–1894) retired in 1884, and his successor was Joseph Neuberg (1840– 1926), an expert in the geometry of the triangle. Analysis at the Université Libre de Bruxelles was still waiting to be awakened by Théophile De Donder (1872–1957)1.

Keywords

Generalize Derivative Trigonometric Series Integral Calculus Scalar Ordinary Differential Equation Peano Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See e. g. J. Mawhin (2001), 99–115 and the references therein.Google Scholar
  2. 2.
    See e. g. J. Mawhin (1989), 385–396 and the references therein.Google Scholar
  3. 3.
    See e. g. J. Mawhin (2003), 196–215 and the references therein.Google Scholar
  4. 4.
    C. Jordan, Cours d’analyse, vol. 1, Paris, Gauthier-Villars, 1882.Google Scholar
  5. 6.
    T. Flett (1974), 69–70, 72; T. Flett (1980), 62–63.Google Scholar
  6. 7.
    P. Dugac (1979), 32–33.Google Scholar
  7. 8.
    Th. Guitard (1986), 20.Google Scholar
  8. 9.
    H.C. Kennedy (1980), 15–16.Google Scholar
  9. 10.
    H. Gispert (1982), 44–47; H. Gispert (1983), 55.Google Scholar
  10. 11.
    U. Bottazzini (1991), 45.Google Scholar
  11. 12.
    M.T. Borgato (1991), 68–76.Google Scholar
  12. 13.
    G. Michelacci (2005), 8–270.Google Scholar
  13. 14.
    Michelacci (2005), 168–170.Google Scholar
  14. 15.
    E. Luciano (2007), 226–227, 255–262.Google Scholar
  15. 16.
    Peano (1884a) 45–47.Google Scholar
  16. 17.
    Peano (1884a), 47.Google Scholar
  17. 18.
    C. Jordan, Cours d’analyse de l’École polytechnique, vol. 1, 2e éd., Paris, Gauthier-Villars, 1893.MATHGoogle Scholar
  18. 19.
    P. Gilbert (1884a), 153–155.Google Scholar
  19. 20.
    Peano (1884b), 252–256.Google Scholar
  20. 21.
    P. Gilbert (1884b), 475–482.Google Scholar
  21. 22.
    T. Flett (1974), 69.Google Scholar
  22. 23.
    G. Peano (1882b), 439–446.Google Scholar
  23. 25.
    Peano (1884c), x–xi: “La dimostrazione di questo numero fu data da Cauchy, Analyse algébrique, Paris 1821, nota III. La dimostrazione geometrica (pure data dal Cauchy, id., pag. 44) in cui si ritiene che la linea di equazione y = f(x), che ha due punti giacenti da parte opposta dell’asse delle x, incontra questo asse in qualche punto, non è soddisfacente … sarebbe esatta qualora si definisse per funzione continua quella che non può passare da un valore ad un altro senza passare per tutti i valori intermedii. E questa definizione trovasi appunto in alcuni trattati, e fra i recenti citeró il Gilbert, Cours d’analyse infinitésimale, Louvain 1872; ma erroneamente, l’A. a pag. 55 cerca di dimostrare la sua equivalenza con quella di cui noi ci serviamo. Invero, se col tendere di x ad a, f(x) oscilla entro valori che comprendono f(a), senza tendere ad alcun limite, f(x) è discontinua per x = a, secondo la nostra definizione, ed è continua, secondo la definizione del Gilbert.”Google Scholar
  24. 27.
    P. Gilbert (1872), 53–55.Google Scholar
  25. 28.
    P. Gilbert, Cours d’analyse infinitésimale. Partie élémentaire, 3e éd., Paris, Gauthier-Villars, 1887, 57.MATHGoogle Scholar
  26. 29.
    Luciano (2007), 252Google Scholar
  27. 30.
    A. Demoulin (1929), 1–71.Google Scholar
  28. 31.
    G. Peano (1889b), (1889c), 110–112; Peano (1889e), 182–183; Peano (1890d), 73–74; Peano (1890e), 153–154; Peano (1892s), 12–14.Google Scholar
  29. 32.
    U. Cassina (1952), 337–362.Google Scholar
  30. 34.
    Cassina (1952), 349.Google Scholar
  31. 36.
    G. Peano (1885a), 677–685.Google Scholar
  32. 37.
    Mansion (1891), p. 57Google Scholar
  33. 38.
    G. Peano (1890f), 182–228.Google Scholar
  34. 39.
    P. Mansion (1890), 222–224.Google Scholar
  35. 40.
    P. Mansion (1914), 168–174.Google Scholar
  36. 41.
    P. Mansion (1904), 254–257; P. Mansion (1907), 213–218.Google Scholar
  37. 42.
    See e. g. P. Butzer, J. Mawhin (2000), 3–9 and the references therein.Google Scholar
  38. 44.
    Ch.-J. de La Vallée Poussin (1893a), 1–82Google Scholar
  39. 45.
    P. Mansion (1892), 227–236.Google Scholar
  40. 46.
    Cette démonstration rédigée à l’aide des symboles de la logique algébrique, est d’une étude très pénible pour ceux qui ne sont pas familiers avec ces notations. Nous avons donné du même théorème une démonstration plus simple dans les Annales de la Société Scientifique de Bruxelles (t. XVII, 1ère partie, p. 8–12). Tout ce que nous disons ici de la démonstration de Peano s’applique aussi à celle-là, qui ne diffère pas essentiellement de celle de Peano.Google Scholar
  41. 47.
    Ch.-J. de La Vallée Poussin (1893a), 79.Google Scholar
  42. 48.
    Ch.-J. de La Vallée Poussin (1893b), 8–12.Google Scholar
  43. 49.
    G. Peano (1890f), 182–228.Google Scholar
  44. 50.
    G. Peano (1897c), 9–18.Google Scholar
  45. 51.
    G. Peano (1908a), 429.Google Scholar
  46. 52.
    G. Peano (1892a), 40–46.Google Scholar
  47. 53.
    Peano (1892a), 40–42.Google Scholar
  48. 54.
    Ch.-J. de La Vallée Poussin (1908), 193–254.Google Scholar
  49. 55.
    A. Denjoy (1935), 273–326.Google Scholar
  50. 56.
    J. Marcinkiewicz, A. Zygmund (1936), 1–43.Google Scholar
  51. 57.
    J. Marcinkiewicz (1937), 38–69.Google Scholar
  52. 58.
    E. Corominas Vigneaux (1946), 88–93.Google Scholar
  53. 59.
    E. Corominas Vigneaux (1947), 89–91.Google Scholar
  54. 60.
    E. Corominas Vigneaux (1953), 177–222.Google Scholar
  55. 61.
    H. Oliver (1954), 444–456.Google Scholar
  56. 62.
    A. Zygmund (1959), 59–60.Google Scholar
  57. 63.
    C. Kassimatis (1965), 1171–1172.Google Scholar
  58. 64.
    P.S. Bullen, S.N. Mukhopadhyay (1973), 127–140.Google Scholar
  59. 65.
    G. Peano (1889e), 182–183.Google Scholar
  60. 66.
    P.L. Butzer, R.J. Nessel (1993), 72–73; P.L. Butzer, R.J. Nessel (2004), 381.Google Scholar
  61. 67.
    See e. g. J. Mawhin (1992), 120.Google Scholar
  62. 68.
    J. Kurzweil (1957), 418–446.Google Scholar
  63. 69.
    R. Henstock (1961), 402–418.Google Scholar
  64. 70.
    For more details see e. g. J. Mawhin (1992) or A. Fonda (2001). For comments on its history, see e. g. J. Mawhin (2007), 47–63 and the references therein.Google Scholar

Copyright information

© Springer-Verlag Italia 2011

Authors and Affiliations

  • Jean Mawhin
    • 1
  1. 1.Institut de recherche en mathématique et physique (IRMP)Université Catholique de Louvain-la-NeuveBelgium

Personalised recommendations