Advertisement

Limiti e continuità

  • Carlo Presilla
Chapter
  • 301 Downloads
Part of the UNITEXT book series (UNITEXT)

Riassunto

Definizione di convergenza per funzioni tra spazi metrici. Unicità del limite e caratterizzazione in termini di successioni convergenti. Limiti di funzioni composte. Il caso delle funzioni complesse: relazione con i limiti delle funzioni parte reale e immaginaria, limite della somma, del prodotto e del rapporto di due funzioni. Limiti con il punto all’infinito. Funzioni continue in un punto, funzioni continue. Una funzione è continua se e solo se la funzione inversa trasforma aperti in aperti o chiusi in chiusi. La composizione di funzioni continue è continua. Il caso delle funzioni complesse: relazione con la continuità delle funzioni parte reale e immaginaria, continuità della somma, del prodotto e del rapporto di due funzioni continue. Funzioni uniformemente continue e Lipschitz continue: mutue implicazioni. Una funzione continua trasforma compatti in compatti e connessi in connessi. Una funzione continua su un compatto a valori in ℝ assume massimo e minimo assoluti. Il modulo di una funzione continua su un compatto a valori in ℂ assume massimo e minimo assoluti. Una funzione a valori in ℂ continua e non nulla in un punto è non nulla in un intorno dello stesso punto. Una funzione continua su un compatto è uniformemente continua.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Italia 2011

Authors and Affiliations

  • Carlo Presilla
    • 1
  1. 1.Dipartimento di FisicaUniversità di Roma “La Sapienza”Italy

Personalised recommendations