Skip to main content

Biologia dei tumori squamocellulari

  • Chapter
Tumori della testa e del collo
  • 885 Accesses

Riassunto

I tumori della testa e del collo (HNSCC) comprendono quelli che originano dall’epitelio del tratto prossimale delle vie aero-digestive (cavo orale, faringe, laringe, seni paranasali e ghiandole salivari); essi rappresentano la sesta causa di morte per cancro nel mondo [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Parkin DM, Bray F, Ferlay J, Pisani P (2002) Global cancer statistics. CA Cancer J Clin 55:74–108

    Article  Google Scholar 

  2. D’Souza G, Kreimer AR, Viscidi R et al (2007) Case-control study of human papillomavirus and oropharyngeal cancer. N Engl J Med 356:1944–1956

    Article  PubMed  Google Scholar 

  3. Rampias T, Sasaki C, Weinberger P, Psyrri A (2009) E6 and E7 gene silencing and. transformed phenotype of human papillomavirus 16-positive oropharyngeal cancer cells. J Natl Cancer Inst 101:412–423

    Article  PubMed  CAS  Google Scholar 

  4. McCaul JA, Gordon KE, Clark LJ, Parkinson EK (2002) Telomerase inhibition and the future management of headand-neck cancer. Lancet Oncol 3:280–288

    Article  PubMed  CAS  Google Scholar 

  5. Goodwin EC, Naeger LK, Breiding DE et al (1998) Transactivation-competent bovine papillomavirus E2 protein is specifically required for efficient repression of human papillomavirus oncogene expression and for acute growth inhibition of cervical carcinoma cell lines. J Virol 72:3925–3934

    PubMed  CAS  Google Scholar 

  6. Munger K, Baldwin A, Edwards KM et al (2004) Mechanisms of human papillomavirus-induced oncogenesis. J Virol 78:11451–11460

    Article  PubMed  Google Scholar 

  7. Mellin H, Dahlgren L, Munck-Wikland E et al (2002) Human papillomavirus type 16 is episomal and a high viral load may be correlated to better prognosis in tonsillar cancer. Int J Cancer 102:152–158

    Article  PubMed  CAS  Google Scholar 

  8. Van Tine BA, Dao LD, Wu SY et al (2004) Human papillomavirus (HPV) origin-binding protein associates with mitotic spindles to enable viral DNA partitioning. Proc Natl Acad Sci USA 101:4030–4035

    Article  PubMed  Google Scholar 

  9. Goodwin EC, DiMaio D (2000) Repression of human papillomavirus oncogenes in HeLa cervical carcinoma cells causes the orderly reactivation of donnant tumor suppressor pathways. Proc Natl Acad Sci USA 97:12513–12518

    Article  PubMed  CAS  Google Scholar 

  10. Tang S, Tao M, McCoy JP et al (2006) Short-term induction and long-term suppression of HPV 16 oncogene silencing by RNA interference in cervical cancer cells. Oncogene 25:2094–2104

    Article  PubMed  CAS  Google Scholar 

  11. de Villiers EM, Weidauer H, Otto H, zur Hausen H (1985) Papillomavirus DNA in human tongue carcinomas. Int J Cancer 36:575–578

    Article  PubMed  Google Scholar 

  12. Li Y, Nichols MA, Shay JW, Xiong Y (1994) Transcriptional repression of the D-type cyclin-dependent kinase inhibitor p 16 by the retinoblastoma susceptibility gene product pRb. Cancer Res 54:6078–6082

    PubMed  CAS  Google Scholar 

  13. Agoff SN, Lin P, Morihara J et al (2003) pl6(INK4a) expression correlates with degree of cervical neoplasia: a comparison with Ki-67 expression and detection of highrisk HPV types. Mod Pathol 16:665–673

    Article  PubMed  Google Scholar 

  14. Begum S, Gillison ML, Ansari-Lari MA et al (2003) Detection of human papillomavirus in cervical lymph nodes: a highly effective strategy for localizing site of tumor origin. Clin Cancer Res 9:6469–6475

    PubMed  CAS  Google Scholar 

  15. Tan TM, Ting RC (1995) In vitro and in vivo inhibition of human papillomavirus type 16 E6 and E7 genes. Cancer Res 55:4599–4605

    PubMed  CAS  Google Scholar 

  16. Strati K, Pitot HC, Lambert PF (2006) Identification of biomarkers that distinguish human papillomavirus (HPV)-positive versus HPV-negative head and neck cancers in a mouse model. Proc Natl Acad Sci USA 103:14152–14157

    Article  PubMed  CAS  Google Scholar 

  17. Smeets SJ, Hesselink AT, Speel EJ et al (2007) A novel algorithm for reliable detection of human papillomavirus in paraffin embedded head and neck cancer specimen. Int J Cancer 121:2465–2472

    Article  PubMed  CAS  Google Scholar 

  18. Slebos RJ, Yi Y, Ely K et al (2006) Gene expression differences associated with human papillomavirus status in head and neck squamous cell carcinoma. Clin Cancer Res 12:701–709

    Article  PubMed  CAS  Google Scholar 

  19. Pyeon D, Newton MA, Lambert PF et al (2007) Fundamental differences in cell cycle deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancers. Cancer Res 67:4605–4619

    Article  PubMed  CAS  Google Scholar 

  20. Grandis JR, Tweardy DJ (1993) Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res 53:3579–3584

    PubMed  CAS  Google Scholar 

  21. Karamouzis MV, Grandis JR, Argiris A (2007) Therapies directed against epidermal growth factor receptor in aerodigestive carcinomas. JAMA 298:70–82

    Article  PubMed  CAS  Google Scholar 

  22. Goldstein NI, Prewett M, Zuklys K et al (1995) Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res 1:1311–1318

    PubMed  CAS  Google Scholar 

  23. Ciardiello F, Tortora G (2002) A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res 7:2958–2970

    Google Scholar 

  24. Camp RL, Chung GG, Rimm DL (2002) Automated subcellular localization and quantification of protein expression tissue microarrays. Nat Med 8:1323–1327

    Article  PubMed  CAS  Google Scholar 

  25. Psyrri A, Yu Z, Weinberger PM et al (2005) Quantitative determination of nuclear and cytoplasmic epidermal growth factor receptor expression in oropharyngeal squamous cell cancer by using automated quantitative analysis. Clin Cancer Res 11:5856–5862

    Article  PubMed  CAS  Google Scholar 

  26. Lin SY, Makino K, Xia W et al (2001) Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol 3:802–808

    Article  PubMed  CAS  Google Scholar 

  27. Chung CH, Ely K, McGavran L et al (2006) Increased epidermal growth factor receptor gene copy number is associated with poor prognosis in head and neck squamous cell carcinomas. J Clin Oncol 24:4170–4176

    Article  PubMed  CAS  Google Scholar 

  28. Pao W, Miller VA, Politi KA et al (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2:e73

    Article  PubMed  Google Scholar 

  29. Engelman JA, Zejnullahu K, Mitsudomi T et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–1043

    Article  PubMed  CAS  Google Scholar 

  30. Miller CT, Lin L, Casper AM et al (2006) Genomic amplification of MET with boundaries within fragile site FRA7G and upregulation of MET pathways in esophageal adenocarcinoma. Oncogene 25:409–418

    PubMed  CAS  Google Scholar 

  31. Sok JC, Coppelli FM, Thomas SM et al (2006) Mutant epidermal growth factor receptor (EGFRvIII) contributes to head and neck cancer growth and resistance to EGFR targeting. Clin Cancer Res 12:5064–5073

    Article  PubMed  CAS  Google Scholar 

  32. Amador ML, Oppenheimer D, Perea S et al (2004) An epidermal growth factor receptor intron 1 polymorphism mediates response to epidermal growth factor receptor inhibitors. Cancer Res 64:9139–9143

    Article  PubMed  CAS  Google Scholar 

  33. Timpson P, Wilson AS, Lehrbach GM et al (2007) Aberrant expression of cortactin in head and neck squamous cell carcinoma cells is associated with enhanced cell proliferation and resistance to the epidermal growth factor receptor inhibitor gefitinib. Cancer Res 67:9304–9314

    Article  PubMed  CAS  Google Scholar 

  34. Clark ES, Brown B, Whigham AS et al (2009) Aggressiveness of HNSCC tumors depends on expression levels of cortactin, a gene in the 1 1q13 amplicon. Oncogene 28:431–444

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Italia

About this chapter

Cite this chapter

Rampias, T., Psyrri, A. (2011). Biologia dei tumori squamocellulari. In: Tumori della testa e del collo. Springer, Milano. https://doi.org/10.1007/978-88-470-1806-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1806-8_7

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1805-1

  • Online ISBN: 978-88-470-1806-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics