The Model with Uncertainty Zones for Ultra High Frequency Prices and Durations: Applications to Statistical Estimation and Mathematical Finance

  • Christian Y. Robert
  • Mathieu Rosenbaum
Part of the New Economic Windows book series (NEW)


The goal of this note is to describe a model for ultra high frequency prices and durations, the model with uncertainty zones developed in [27]. We also give some results from [28] and [29] which show how it can be used in practice for statistical estimation or in order to hedge derivatives. Before introducing this model, we briefly recall the classical approaches of price modelling in the so-called microstructure noise literature.


Price Change Exit Time Transaction Price Short Selling Hedging Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P. (2000) Great Realizations. Risk, 13, 105–108Google Scholar
  2. 2.
    Ball, C. (1988) Estimation bias induced by discrete security prices. Journal of Finance, 43, 841–865CrossRefGoogle Scholar
  3. 3.
    Bandi, F.M., Russel, J.R. (2005) Microstructure noise, realized variance and optimal sampling. To appear in Review of Economic StudiesGoogle Scholar
  4. 4.
    Barndorff-Nielsen O.E., Hansen P., Lunde A., Shephard, N. (2008) Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise. Econometrica, 76, 1481–1536CrossRefGoogle Scholar
  5. 5.
    Bertsimas, D., Kogan, L., Lo, A.W. (2000) When is time continuous? Journal of Financial Economics, 55, 173–204CrossRefGoogle Scholar
  6. 6.
    Black, F., Scholes, M. (1973) The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–654CrossRefGoogle Scholar
  7. 7.
    Cetin, U., Soner, M., Touzi, N. (2009) Option hedging under liquidity costs. To appear in Finance and StochasticsGoogle Scholar
  8. 8.
    Cho, D., Frees, E. (1988) Estimating the volatility of discrete stock prices. Journal of Finance, 43, 451–466CrossRefGoogle Scholar
  9. 9.
    Delbaen, F., Schachermayer, W. (1994) A general version of the fundamental theorem of asset pricing. Mathematische Annalen, 300, 463–520CrossRefGoogle Scholar
  10. 10.
    Delattre, S., Jacod, J. (1997) A central limit theorem for normalized functions of the increments of a diffusion process in the presence of round-off errors. Bernoulli, 3, 1–28CrossRefGoogle Scholar
  11. 11.
    El Karoui, N., Jeanblanc-Picqué, M., Shreve, S. (1998) Robustness of the Black and Scholes formula. Mathematical Finance, 8, 93–126CrossRefGoogle Scholar
  12. 12.
    Engle, R.F. (2000) The econometrics of ultra high frequency data. Econometrica, 68, 1–22CrossRefGoogle Scholar
  13. 13.
    Gloter, A., Jacod, J. (1997) Diffusions with measurement errors, I. Local Asymptotic Normality, II. Optimal estimators. ESAIM PS, 5, 225–260CrossRefGoogle Scholar
  14. 14.
    Gottlieb, G., Kalay, A. (1985) Implications of the Discreteness of Observed Stock Prices. Journal of Finance, 40, 135–154CrossRefGoogle Scholar
  15. 15.
    Gourieroux, C., Jasiak, J. (2001) Financial Econometrics: Problems, Models, and Methods. Princeton University PressGoogle Scholar
  16. 16.
    Hansen, P.R., Lunde, A. (2006) Realized variance and market microstructure noise. Journal of Business and Economics Statistics, 24, 127–161CrossRefGoogle Scholar
  17. 17.
    Hayashi, T., Mykland, P.A. (2005) Hedging errors: an asymptotic approach. Mathematical Finance, 15, 309–343CrossRefGoogle Scholar
  18. 18.
    Hayashi, T., Yoshida, N. (2005) On covariance estimation of non-synchronously observed diffusion processes. Bernoulli, 11, 359–379CrossRefGoogle Scholar
  19. 19.
    Jacod, J., Shiryaev, A.N. (2002) Limit Theorems for Stochastic Processes. Springer-Verlag, Second EditionGoogle Scholar
  20. 20.
    Jacod, J., Li, Y., Mykland, P.A., Podolskij, M., Vetter, M. (2009) Microstructure noise in the continuous case: the pre-averaging Approach. Stochastic Processes and their Applications, 119, 2249–2276CrossRefGoogle Scholar
  21. 21.
    Jouini, E., Kallal, H. (1995) Arbitrage in securities markets with short sales constraints. Mathematical Finance, 5, 197–232CrossRefGoogle Scholar
  22. 22.
    Kabanov, Y.M., Last, G. (2002) Hedging under transaction costs in currency markets: a continuous-time model. Mathematical Finance, 12, 63–70CrossRefGoogle Scholar
  23. 23.
    Kabanov, Y.M., Safarian, M.M. (1997) On Leland’s strategy of option pricing with transactions costs. Finance and Stochastics, 1, 239–250CrossRefGoogle Scholar
  24. 24.
    Kalnina, I., Linton, O.B. (2008) Estimating quadratic variation consistently in the presence of correlated measurement error. Journal of Econometrics, 147, 47–59CrossRefGoogle Scholar
  25. 25.
    Koehl, P.F., Pham, H., Touzi, N. (1999) Hedging in discrete time under transaction costs and continuous-time limit. Journal of Applied Probability, 36, 163–178CrossRefGoogle Scholar
  26. 26.
    Li, Y., Mykland, P.A. (2007) Are volatility estimators robust with respect to modelling assumptions? Bernoulli, 13, 601–622CrossRefGoogle Scholar
  27. 27.
    Robert, C.Y., Rosenbaum, M. (2009) A new approach for the dynamics of ultra high frequency data: the model with uncertainty zones. To appear in Journal of Financial EconometricsGoogle Scholar
  28. 28.
    Robert, C.Y., Rosenbaum, M. (2009) Volatility and covariation estimation when microstructure noise and trading times are endogenous. To appear in Mathematical FinanceGoogle Scholar
  29. 29.
    Robert, C.Y., Rosenbaum, M. (2010) On the microstructural hedging error. SIAM Journal on Financial Mathematics, 1, 427–453CrossRefGoogle Scholar
  30. 30.
    Rosenbaum, M. (2009) Integrated volatility and round-off error. Bernoulli, 15, 687–720CrossRefGoogle Scholar
  31. 31.
    Tankov, P., Voltchkova, E. (2008) Asymptotic analysis of hedging errors in models with jumps. Stochastic Processes and their Applications, 119, 2004–2027CrossRefGoogle Scholar
  32. 32.
    Voev, V., Lunde, A. (2007) Integrated covariance estimation using high-frequency data in the presence of noise. Journal of Financial Econometrics, 5, 68–104CrossRefGoogle Scholar
  33. 33.
    Zhang, L. (2006a) Efficient estimation of stochastic volatility using noisy observations: a multi-scale approach. Bernoulli, 12, 1019–1043CrossRefGoogle Scholar
  34. 34.
    Zhang, L. (2006b) Estimating covariation: Epps effect and microstructure noise. A paraître dans Journal of EconometricsGoogle Scholar
  35. 35.
    Zhang, L., Mykland, P.A., Aït-Sahalia, Y. (2005) A Tale of two time scales: determining integrated volatility with noisy high-frequency data. Journal of the American Statistical Association, 100, 1394–1411CrossRefGoogle Scholar
  36. 36.
    Zhou, B. (1996) High-frequency data and volatility in foreign-exchange rates. Journal of Business and Economic Statistics, 14, 45–52Google Scholar

Copyright information

© Springer-Verlag Italia 2011

Authors and Affiliations

  • Christian Y. Robert
    • 1
  • Mathieu Rosenbaum
    • 2
  1. 1.CREST — ENSAE Paris TechParis
  2. 2.École PolytechniqueCMAPChâtenay-MalabryFrance

Personalised recommendations