Advertisement

B Cell Activation: General to HCV-Specific Considerations

  • Vito Racanelli
  • Claudia Brunetti
Chapter

Abstract

The mechanisms by which HCV may cause an abnormal B cell expansion remain puzzling. A direct transforming role of the virus appears unlikely, considering that B cells are not direct targets for productive virus replication and that viral RNA sequences cannot be integrated in the host genome. The current speculation is that protracted stimulation either by the virus alone or by HCV-containing immune complexes expands clones of B cells, which may undergo mutational events that lead to the development of cryoglobulinemia or non-Hodgkin’s lymphoma. Numerous attempts have been made to unravel HCV-B cell interaction and define the nature of the HCV antigen, driving B cell disorders. Starting from a brief review of the pathophysiology of B cell activation, we discuss in detail functional and molecular evidences supporting or arguing against current directions in B cell biology during chronic HCV infection.

Keywords

Human Leukocyte Antigen Mixed Cryoglobulinemia Chronic Antigenic Stimulation Mixed Cryoglobulinemia Patient Human Leukocyte Antigen Phenotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Lanzavecchia A (1983) One out of five peripheral blood B lymphocytes is activated to high-rate Ig production by human alloreactive T cell clones. Eur J Immunol 13(10):820–824PubMedCrossRefGoogle Scholar
  2. 2.
    Bernasconi NL, Traggiai E, Lanzavecchia A (2002) Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298(5601):2199–2202PubMedCrossRefGoogle Scholar
  3. 3.
    Bernasconi NL, Onai N, Lanzavecchia A (2003) A role for toll-like receptors in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood 101(11):4500–4504PubMedCrossRefGoogle Scholar
  4. 4.
    Ruprecht CR, Lanzavecchia A (2006) Toll-like receptor stimulation as a third signal required for activation of human naive B cells. Eur J Immunol 36(4):810–816PubMedCrossRefGoogle Scholar
  5. 5.
    Lanzavecchia A, Bernasconi N, Traggiai E et al (2006) Understanding and making use of human memory B cells. Immunol Rev 211:303–309PubMedCrossRefGoogle Scholar
  6. 6.
    Lanzavecchia A, Sallusto F (2007) Toll-like receptors and innate immunity in B-cell activation and antibody responses. Curr Opin Immunol 19(3):268–274PubMedCrossRefGoogle Scholar
  7. 7.
    El-Serag HB, Hampel H, Yeh C et al (2002) Extrahepatic manifestations of hepatitis C among United States male veterans. Hepatology 36(6):1439–1445PubMedGoogle Scholar
  8. 8.
    Giordano TP, Henderson L, Landgren O et al (2007) Risk of non-Hodgkin lymphoma and lymphoproliferative precursor diseases in US veterans with hepatitis C virus. JAMA 297(18):2010–2017PubMedCrossRefGoogle Scholar
  9. 9.
    Charles ED, Dustin LB (2009) Hepatitis C virus-induced cryoglobulinemia. Kidney Int 76(8):818–824PubMedCrossRefGoogle Scholar
  10. 10.
    Zehender G, Meroni L, De Maddalena C et al (1997) Detection of hepatitis C virus RNA in CD19 peripheral blood mononuclear cells of chronically infected patients. J Infect Dis 176(5):1209–1214PubMedCrossRefGoogle Scholar
  11. 11.
    Navas MC, Fuchs A, Schvoerer E et al (2002) Dendritic cell susceptibility to hepatitis C virus genotype 1 infection. J Med Virol 67(2):152–161PubMedCrossRefGoogle Scholar
  12. 12.
    Bernardin F, Tobler L, Walsh I et al (2008) Clearance of hepatitis C virus RNA from the peripheral blood mononuclear cells of blood donors who spontaneously or therapeutically control their plasma viremia. Hepatology 47(5):1446–1452PubMedCrossRefGoogle Scholar
  13. 13.
    Sung VM, Shimodaira S, Doughty AL et al (2003) Establishment of B-cell lymphoma cell lines persistently infected with hepatitis C virus in vivo and in vitro: the apoptotic effects of virus infection. J Virol 77(3):2134–2146PubMedCrossRefGoogle Scholar
  14. 14.
    Kondo Y, Sung VM, Machida K et al (2007) Hepatitis C virus infects T cells and affects interferon-gamma signaling in T cell lines. Virology 361(1):161–173PubMedCrossRefGoogle Scholar
  15. 15.
    Marukian S, Jones CT, Andrus L et al (2008) Cell culture-produced hepatitis C virus does not infect peripheral blood mononuclear cells. Hepatology 48(6):1843–1850PubMedCrossRefGoogle Scholar
  16. 16.
    Pileri P, Uematsu Y, Campagnoli S et al (1998) Binding of hepatitis C virus to CD81. Science 282(5390):938–941PubMedCrossRefGoogle Scholar
  17. 17.
    Bradbury LE, Kansas GS, Levy S et al (1992) The CD19/CD21 signal transducing complex of human B lymphocytes includes the target of antiproliferative antibody-1 and Leu-13 molecules. J Immunol 149(9):2841–2850PubMedGoogle Scholar
  18. 18.
    Rosa D, Saletti G, De Gregorio E et al (2005) Activation of naive B lymphocytes via CD81, a pathogenetic mechanism for hepatitis C virus-associated B lymphocyte disorders. Proc Natl Acad Sci USA 102(51):18544–18549PubMedCrossRefGoogle Scholar
  19. 19.
    Machida K, Cheng KT, Pavio N et al (2005) Hepatitis C virus E2-CD81 interaction induces hypermutation of the immunoglobulin gene in B cells. J Virol 79(13):8079–8089PubMedCrossRefGoogle Scholar
  20. 20.
    Keck ZY, Xia J, Cai Z et al (2007) Immunogenic and functional organization of hepatitis C virus (HCV) glycoprotein E2 on infectious HCV virions. J Virol 81(2):1043–1047PubMedCrossRefGoogle Scholar
  21. 21.
    Quinn ER, Chan CH, Hadlock KG et al (2001) The B-cell receptor of a hepatitis C virus (HCV)-associated non-Hodgkin lymphoma binds the viral E2 envelope protein, implicating HCV in lymphomagenesis. Blood 98(13):3745–3749PubMedCrossRefGoogle Scholar
  22. 22.
    Cavalli F, Isaacson PG, Gascoyne RD et al (2001) MALT lymphomas. Hematology Am Soc Hematol Educ Program: 241–258Google Scholar
  23. 23.
    Suarez F, Lortholary O, Hermine O et al (2006) Infection-associated lymphomas derived from marginal zone B cells: a model of antigen-driven lymphoproliferation. Blood 107(8):3034–3044PubMedCrossRefGoogle Scholar
  24. 24.
    Mayo MJ (2003) Extrahepatic manifestations of hepatitis C infection. Am J Med Sci 325(3):135–148PubMedCrossRefGoogle Scholar
  25. 25.
    Zignego AL, Giannelli F, Marrocchi ME et al (2000) T(14;18) translocation in chronic hepatitis C virus infection. Hepatology 31(2):474–479PubMedCrossRefGoogle Scholar
  26. 26.
    Zuckerman E, Zuckerman T, Sahar D et al (2001) bcl-2 and immunoglobulin gene rearrangement in patients with hepatitis C virus infection. Br J Haematol 112(2):364–369PubMedCrossRefGoogle Scholar
  27. 27.
    Sansonno D, Tucci FA, De Re V et al (2005) HCV-associated B cell clonalities in the liver do not carry the t(14;18) chromosomal translocation. Hepatology 42:1019–1027PubMedCrossRefGoogle Scholar
  28. 28.
    Roulland S, Lebailly P, Lecluse Y et al (2006) Long-term clonal persistence and evolution of t(14;18)-bearing B cells in healthy individuals. Leukemia 20(1):158–162PubMedCrossRefGoogle Scholar
  29. 29.
    Racanelli V, Sansonno D, Piccoli C et al (2001) Molecular characterization of B cell clonal expansions in the liver of chronically hepatitis C virus-infected patients. J Immunol 167(1):21–29PubMedGoogle Scholar
  30. 30.
    Charles ED, Green RM, Marukian S et al (2008) Clonal expansion of immunoglobulin M+CD27+ B cells in HCV-associated mixed cryoglobulinemia. Blood 111(3):1344–1356PubMedCrossRefGoogle Scholar
  31. 31.
    Carbonari M, Caprini E, Tedesco T et al (2005) Hepatitis C virus drives the unconstrained monoclonal expansion of VH1-69-expressing memory B cells in type II cryoglobulinemia: a model of infection-driven lymphomagenesis. J Immunol 174(10):6532–6539PubMedGoogle Scholar
  32. 32.
    Chan CH, Hadlock KG, Foung SK et al (2001) V(H)1-69 gene is preferentially used by hepatitis C virus-associated B cell lymphomas and by normal B cells responding to the E2 viral antigen. Blood 97(4):1023–1026PubMedCrossRefGoogle Scholar
  33. 33.
    De Re V, De Vita S, Marzotto A et al (2000) Sequence analysis of the immunoglobulin antigen receptor of hepatitis C virus-associated non-Hodgkin lymphomas suggests that the malignant cells are derived from the rheumatoid factor-producing cells that occur mainly in type II cryoglobulinemia. Blood 96(10):3578–3584PubMedGoogle Scholar
  34. 34.
    Machida K, Kondo Y, Huang JY et al (2008) Hepatitis C virus (HCV)-induced immunoglobulin hypermutation reduces the affinity and neutralizing activities of antibodies against HCV envelope protein. J Virol 82(13):6711–6720PubMedCrossRefGoogle Scholar
  35. 35.
    Hu YW, Rocheleau L, Larke B et al (2005) Immunoglobulin mimicry by hepatitis C virus envelope protein E2. Virology 332(2):538–549PubMedCrossRefGoogle Scholar
  36. 36.
    De Re V, Sansonno D, Simula MP et al (2006) HCV-NS3 and IgG-Fc crossreactive IgM in patients with type II mixed cryoglobulinemia and B-cell clonal proliferations. Leukemia 20(6):1145–1154PubMedCrossRefGoogle Scholar
  37. 37.
    De Re V, Caggiari L, Monti G et al (2010) HLA DR-DQ ­combination associated with the increased risk of developing human HCV positive non-Hodgkin’s lymphoma is related to the type II mixed cryoglobulinemia. Tissue Antigens 75(2):127–135PubMedCrossRefGoogle Scholar
  38. 38.
    Cacoub P, Renou C, Kerr G et al (2001) Influence of HLA-DR phenotype on the risk of hepatitis C virus-­associated mixed cryoglobulinemia. Arthritis Rheum 44(9):2118–2124PubMedCrossRefGoogle Scholar
  39. 39.
    De Re V, Caggiari L, De Vita S et al (2007) Genetic insights into the disease mechanisms of type II mixed cryoglobu­linemia induced by hepatitis C virus. Dig Liver Dis 39(Suppl 1):S65–S71PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  1. 1.Department of Internal Medicine and Clinical OncologyUniversity of Bari Medical SchoolBariItaly

Personalised recommendations