Advertisement

Rituximab in Cryoglobulinemic Vasculitis: First- or Second-Line Therapy?

  • Peter Lamprecht
  • Paul Klenerman
Chapter

Abstract

Rituximab is a monoclonal chimeric anti-CD20 antibody selectively targeting B cells. It has been shown to induce remission in HCV-associated cryoglobulinemic vasculitis as a first- or second-line treatment option. While rituximab induces a complete clinical response in 60–70% of patients with HCV-associated cryoglobulinemic vasculitis, viremia persists or even increases. Moreover, 30% of the patients are subject to relapses during peripheral blood B-cell recovery. The combination of rituximab and PEG-IFN-α plus ribavirin is aimed at providing the anti-proliferative impact and anti-viral potencies of both treatment approaches, with subsequent improvement of outcome. Rituximab and PEG-IFN-α plus ribavirin induce remission in severe and refractory HCV-associated cryoglobulinemic vasculitis. Based on the currently available evidence, combined treatment with rituximab and PEG-IFN-α plus ribavirin should be considered as the first-line treatment in patients with active disease resistant to anti-viral therapy and in those with severe manifestations and activity of cryoglobulinemic vasculitis. The inclusion of such patients in trials for further assessment and evaluation is highly desirable.

Keywords

Sustained Virological Response Mixed Cryoglobulinemia Complete Clinical Response Cryoglobulinemic Vasculitis Moderate Disease Severity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Jennette JC, Falk RJ, Andrassy K et al (1994) Nomenclature of systemic vasculitides. Proposal of an international consensus conference. Arthritis Rheum 37:187–192PubMedCrossRefGoogle Scholar
  2. 2.
    Ferri C, Mascia MT (2006) Cryoglobulinemic vasculitis. Curr Opin Rheumatol 18:54–63PubMedGoogle Scholar
  3. 3.
    Giordano TP, Henderson L, Landgren O et al (2007) Risk of non-Hodgkin lymphoma and lymphoproliferative precursor diseases in US veterans with hepatitis C virus. JAMA 297:2010–2017PubMedCrossRefGoogle Scholar
  4. 4.
    de Sanjose S, Benavente Y, Vajdic CM et al (2008) Hepatitis C and non-Hodgkin lymphoma among 4784 cases and 6269 controls from the International Lymphoma Epidemiology Consortium. Clin Gastroenterol Hepatol 6:451–458PubMedCrossRefGoogle Scholar
  5. 5.
    Saadoun D, Sellam J, Ghillani-Dalbin P et al (2006) Increased risks of lymphoma and death among patients with non-hepatitis C virus-related mixed cryoglobulinemia. Arch Intern Med 166:2101–2108PubMedCrossRefGoogle Scholar
  6. 6.
    Sansonno D, Lauletta G, De Re V et al (2004) Intrahepatic B cell clonal expansions and extrahepatic manifestations of chronic HCV infection. Eur J Immunol 34:126–136PubMedCrossRefGoogle Scholar
  7. 7.
    Quartuccio L, Fabris M, Salvin S et al (2007) Bone marrow B-cell clonal expansion in type II mixed cryoglobulinaemia: association with nephritis. Rheumatology (Oxford) 46:1657–1661CrossRefGoogle Scholar
  8. 8.
    Pileri P, Uematsu Y, Campagnoli S et al (1998) Binding of hepatitis C virus to CD81. Science 282:938–941PubMedCrossRefGoogle Scholar
  9. 9.
    Carbonari M, Caprini E, Tedesco T et al (2005) Hepatitis C virus drives the unconstrained monoclonal expansion of VH1-69-expressing memory B cells in type II cryoglobulinemia: a model of infection-driven lymphomagenesis. J Immunol 174:6532–6539PubMedGoogle Scholar
  10. 10.
    Charles ED, Green RM, Marukian S et al (2008) Clonal expansion of immunoglobulin M+CD27+ B cells in HCV-associated mixed cryoglobulinemia. Blood 111:1344–1356PubMedCrossRefGoogle Scholar
  11. 11.
    Landau DA, Rosenzwajg M, Saadoun D et al (2009) The B lymphocyte stimulator receptor-ligand system in hepatitis C virus-induced B cell clonal disorders. Ann Rheum Dis 68:337–344PubMedCrossRefGoogle Scholar
  12. 12.
    Zignego AL, Ferri C, Giannelli F et al (2002) Prevalence of bcl-2 rearrangement in patients with hepatitis C virus-related mixed cryoglobulinemia with or without B-cell lymphomas. Ann Intern Med 137:571–580PubMedCrossRefGoogle Scholar
  13. 13.
    Saadoun D, Rosenzwajg M, Landau D et al (2008) Restoration of peripheral immune homeostasis after rituximab in mixed cryoglobulinemia vasculitis. Blood 111:5334–5341PubMedCrossRefGoogle Scholar
  14. 14.
    Sansonno D, De Re V, Lauletta G et al (2003) Monoclonal antibody treatment of mixed cryoglobulinemia resistant to interferon alpha with an anti-CD20. Blood 101:3818–3826PubMedCrossRefGoogle Scholar
  15. 15.
    Klenerman P, Hill A (2005) T cells and viral persistence: lessons from diverse infections. Nat Immunol 6:873–879PubMedCrossRefGoogle Scholar
  16. 16.
    Rushbrook SM, Ward SM, Unitt E et al (2005) Regulatory T cells suppress in vitro proliferation of virus-specific CD8+ T cells during persistent hepatitis C virus infection. J Virol 79:7852–7859PubMedCrossRefGoogle Scholar
  17. 17.
    Ward SM, Fox BC, Brown PJ et al (2007) Quantification and localisation of FOXP3+ T lymphocytes and relation to hepatic inflammation during chronic HCV infection. J Hepatol 47:316–324PubMedCrossRefGoogle Scholar
  18. 18.
    Machida K, Tsukiyama-Kohara K, Sekiguch S et al (2009) Hepatitis C virus and disrupted interferon signaling promote lymphoproliferation via type II CD95 and interleukins. Gastroenterology 137:285–296PubMedCrossRefGoogle Scholar
  19. 19.
    Fortunato G, Calcagno G, Bresciamorra V et al (2008) Multiple sclerosis and hepatitis C virus infection are associated with single nucleotide polymorphisms in interferon pathway genes. J Interferon Cytokine Res 28:141–152PubMedCrossRefGoogle Scholar
  20. 20.
    Neumann AU, Lam NP, Dahari H et al (1998) Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science 282:103–107PubMedCrossRefGoogle Scholar
  21. 21.
    Sansonno D, Tucci FA, Troiani L et al (2008) Current and emerging therapeutic approaches in HCV-related mixed cryoglobulinemia. Curr Med Chem 15:117–126PubMedCrossRefGoogle Scholar
  22. 22.
    Saadoun D, Delluc A, Piette JC, Cacoub P (2008) Treatment of hepatitis C-associated mixed cryoglobulinemia vasculitis. Curr Opin Rheumatol 20:23–28PubMedGoogle Scholar
  23. 23.
    Schröder C, Azimzadeh AM, Wu G et al (2003) Anti-CD20 treatment depletes B-cells in blood and lymphatic tissue of cynomolgus monkeys. Transpl Immunol 12:19–28PubMedCrossRefGoogle Scholar
  24. 24.
    Zaja F, De Vita S, Mazzaro C et al (2003) Efficacy and safety of rituximab in type II mixed cryoglobulinemia. Blood 101:3827–3834PubMedCrossRefGoogle Scholar
  25. 25.
    Roccatello D, Baldovino S, Rossi D et al (2004) Long-term effects of anti-CD20 monoclonal antibody treatment of cryoglobulinaemic glomerulonephritis. Nephrol Dial Transplant 19:3054–3061PubMedCrossRefGoogle Scholar
  26. 26.
    Quartuccio L, Soardo G, Romano G et al (2006) Rituximab treatment for glomerulonephritis in HCV-associated mixed cryoglobulinaemia: efficacy and safety in the absence of ­steroids. Rheumatology (Oxford) 45:842–846CrossRefGoogle Scholar
  27. 27.
    Koukoulaki M, Abeygunasekara SC, Smith KG, Jayne DR (2005) Remission of refractory hepatitis C-negative cryoglobulinaemic vasculitis after rituximab and infliximab. Nephrol Dial Transplant 20:213–216PubMedCrossRefGoogle Scholar
  28. 28.
    Pereira AA, Jacobson IM (2009) New and experimental therapies for HCV. Nat Rev Gastroenterol Hepatol 6:403–411PubMedCrossRefGoogle Scholar
  29. 29.
    Landau DA, Saadoun D, Halfon P et al (2008) Relapse of hepatitis C virus-associated mixed cryoglobulinemia vasculitis in patients with sustained viral response. Arthritis Rheum 58:604–611PubMedCrossRefGoogle Scholar
  30. 30.
    Casato M, Mecucci C, Agnello V et al (2002) Regression of lymphoproliferative disorder after treatment for hepatitis C virus infection in a patient with partial trisomy 3, Bcl-2 overexpression, and type II cryoglobulinemia. Blood 99:2259–2261PubMedCrossRefGoogle Scholar
  31. 31.
    Lamprecht P, Lerin-Lozano C, Merz H et al (2003) Rituximab induces remission in refractory HCV associated cryoglobulinaemic vasculitis. Ann Rheum Dis 62:1230–1233PubMedCrossRefGoogle Scholar
  32. 32.
    Saadoun D, Resche-Rigon M, Sene D et al (2008) Rituximab combined with Peg-interferon-ribavirin in refractory hepatitis C virus-associated cryoglobulinaemia vasculitis. Ann Rheum Dis 67:1431–1436PubMedCrossRefGoogle Scholar
  33. 33.
    Terrier B, Saadoun D, Sène D et al (2009) Efficacy and tolerability of rituximab with or without PEGylated interferon alfa-2b plus ribavirin in severe hepatitis C virus-related vasculitis: a long-term followup study of thirty-two patients. Arthritis Rheum 60:2531–2540PubMedCrossRefGoogle Scholar
  34. 34.
    Sène D, Ghillani-Dalbin P, Amoura Z et al (2009) Rituximab may form a complex with iGmkappa mixed cryoglobulin and induce severe systemic reactions in patients with hepatitis C virus-induced vasculitis. Arthritis Rheum 60:3848–3855PubMedCrossRefGoogle Scholar
  35. 35.
    Webster DP, Klenerman P, Collier J, Jeffery KJM (2009) Development of novel treatments for hepatitis C. Lancet Infect Dis 9:108–117PubMedCrossRefGoogle Scholar
  36. 36.
    McHutchison JG, Everson GT, Gordon SC et al (2009) Telaprevir with peginterferon and ribavirin for chronic HCV genotype 1 infection. N Engl J Med 360:1827–1838PubMedCrossRefGoogle Scholar
  37. 37.
    Hézode C, Forestier N, Dusheiko G (2009) Telaprevir and peginterferon with or without ribavirin for chronic HCV infection. N Engl J Med 360:1839–1850PubMedCrossRefGoogle Scholar
  38. 38.
    Hoofnagle JH (2009) A step forward in therapy for hepatitis C. N Engl J Med 360:1899–1901PubMedCrossRefGoogle Scholar
  39. 39.
    Casato M, Lagana B, Pucillo LP, Quinti I (1998) Interferon for hepatitis C virus-negative type II mixed cryoglobulinemia. N Engl J Med 338:1386–1387PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  1. 1.Department of Rheumatology, Vasculitis Center UKSH & Clinical Center Bad BramstedtUniversity of LübeckLübeckGermany
  2. 2.Peter Medawar Building for Pathogen Research and National Institute for Health Research Biomedical Research CentreUniversity of OxfordOxfordUK

Personalised recommendations