Waldenström’s Macroglobulinemia Associated with Cryoglobulinemia: Pathogenetic, Clinical, and Therapeutic Aspects



Waldenström’s macroglobulinemia (WM) is a distinct B-cell lymphoproliferative disorder that is characterized by infiltration of the bone marrow with lymphoplasmacytic cells and by an IgM monoclonal gammopathy. Both type I and type II cryoglobulins may be associated with WM. About 10–20% of patients with the diagnosis of WM have cryoglobulins, but clinically evident type I cryoglobulinemia occurs in less than 5% of WM patients. In type I cryoglobulinemia, the signs and symptoms are mainly related to the physicochemical properties of the monoclonal IgM and immune phenomena do not develop. In type II cryoglobulinemia, the symptoms are related to the immune phenomena, with vasculitis of small and medium-sized vessels as the most common finding. However, the clinical features of types I and II cryoglobulinemia may overlap. Plasmapheresis/plasma exchange is very effective for the immediate reduction of the amount of circulating type I cryoglobulins and immediate anti-lymphoma treatment with highly effective regimens should be considered concomitantly or following plasma exchange. In WM patients with type II cryoglobulinemia, plasmapheresis may not be as effective and immunosuppressive therapies should be considered, including rituximab.


Mixed Cryoglobulinemia Membranoproliferative Glomerulonephritis Palpable Purpura Hyperviscosity Syndrome Mixed Cryoglobulins 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Owen RG, Treon SP, Al-Katib A et al (2003) Clinico­pathological definition of Waldenstrom’s macroglobulinemia: consensus panel recommendations from the second international workshop on Waldenstrom’s macroglobulinemia. Semin Oncol 30(2):110–115PubMedCrossRefGoogle Scholar
  2. 2.
    Harris NL, Jaffe ES, Stein H et al (1994) A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 84(5):1361–1392PubMedGoogle Scholar
  3. 3.
    Harris NL, Jaffe ES, Diebold J et al (1999) World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997. J Clin Oncol 17(12):3835–3849PubMedGoogle Scholar
  4. 4.
    Dimopoulos MA, Panayiotidis P, Moulopoulos LA et al (2000) Waldenstrom’s macroglobulinemia: clinical features, complications, and management. J Clin Oncol 18(1):214–226PubMedGoogle Scholar
  5. 5.
    Treon SP, Hunter ZR, Aggarwal A et al (2006) Character­ization of familial Waldenstrom’s macroglobulinemia. Ann Oncol 17(3):488–494PubMedCrossRefGoogle Scholar
  6. 6.
    Custodi P, Cerutti A, Cassani P et al (1995) Familial occurrence of IgMk gammapathy: no involvement of HCV infection. Haematologica 80(5):484–485PubMedGoogle Scholar
  7. 7.
    McMaster ML (2003) Familial Waldenstrom’s macroglobulinemia. Semin Oncol 30(2):146–152PubMedCrossRefGoogle Scholar
  8. 8.
    McMaster ML, Csako G, Giambarresi TR et al (2007) Long-term evaluation of three multiple-case Waldenstrom macroglobulinemia families. Clin Cancer Res 13(17):5063–5069PubMedCrossRefGoogle Scholar
  9. 9.
    Giordano TP, Henderson L, Landgren O et al (2007) Risk of non-Hodgkin lymphoma and lymphoproliferative precursor diseases in US veterans with hepatitis C virus. JAMA 297(18):2010–2017PubMedCrossRefGoogle Scholar
  10. 10.
    Akashi Y, Inoh M, Gamou N et al (2003) Macroglobulinemia and membranoproliferative glomerulonephritis in a hepatitis C virus-positive patient. Clin Nephrol 60(1):49–52PubMedGoogle Scholar
  11. 11.
    Trejo O, Ramos-Casals M, Lopez-Guillermo A et al (2003) Hematologic malignancies in patients with cryoglobulinemia: association with autoimmune and chronic viral diseases. Semin Arthritis Rheum 33(1):19–28PubMedCrossRefGoogle Scholar
  12. 12.
    Leleu X, O’Connor K, Ho AW et al (2007) Hepatitis C viral infection is not associated with Waldenstrom’s macroglobulinemia. Am J Hematol 82(1):83–84PubMedCrossRefGoogle Scholar
  13. 13.
    Dimopoulos MA, Kyle RA, Anagnostopoulos A, Treon SP (2005) Diagnosis and management of Waldenstrom’s macroglobulinemia. J Clin Oncol 23(7):1564–1577PubMedCrossRefGoogle Scholar
  14. 14.
    Farhangi M, Merlini G (1986) The clinical implications of monoclonal immunoglobulins. Semin Oncol 13(3):366–379PubMedGoogle Scholar
  15. 15.
    Merlini G, Farhangi M, Osserman EF (1986) Monoclonal immunoglobulins with antibody activity in myeloma, macroglobulinemia and related plasma cell dyscrasias. Semin Oncol 13(3):350–365PubMedGoogle Scholar
  16. 16.
    Brouet JC, Clauvel JP, Danon F et al (1974) Biologic and clinical significance of cryoglobulins. A report of 86 cases. Am J Med 57(5):775–788PubMedCrossRefGoogle Scholar
  17. 17.
    Brouet JC, Clauvel JP, Seligmann M (1975) Cryoglobu­linemias. Clinical and biological correlations. Ann Med Interne 126(8–9):563–567Google Scholar
  18. 18.
    Katzmann JA, Clark R, Wiegert E et al (1997) Identification of monoclonal proteins in serum: a quantitative comparison of acetate, agarose gel, and capillary electrophoresis. Electro­phoresis 18(10):1775–1780PubMedCrossRefGoogle Scholar
  19. 19.
    Shihabi ZK (1996) Analysis and general classification of serum cryoglobulins by capillary zone electrophoresis. Electrophoresis 17(10):1607–1612PubMedCrossRefGoogle Scholar
  20. 20.
    Shihabi ZK (2006) Cryoglobulins: an important but neglected clinical test. Ann Clin Lab Sci 36(4):395–408PubMedGoogle Scholar
  21. 21.
    Gobbi PG, Bettini R, Montecucco C et al (1994) Study of prognosis in Waldenstrom’s macroglobulinemia: a proposal for a simple binary classification with clinical and investigational utility. Blood 83(10):2939–2945PubMedGoogle Scholar
  22. 22.
    Dimopoulos MA, Alexanian R (1994) Waldenstrom’s ­macroglobulinemia. Blood 83(6):1452–1459PubMedGoogle Scholar
  23. 23.
    Kyle RA, Garton JP (1987) The spectrum of IgM monoclonal gammopathy in 430 cases. Mayo Clin Proc 62(8):719–731PubMedCrossRefGoogle Scholar
  24. 24.
    Tedeschi A, Barate C, Minola E, Morra E (2007) Cryoglobulinemia. Blood Rev 21(4):183–200PubMedCrossRefGoogle Scholar
  25. 25.
    Dammacco F, Miglietta A, Lobreglio G, Bonomo L (1986) Cryoglobulins and pyroglobulins: an overview. Ric Clin Lab 16(2):247–267PubMedGoogle Scholar
  26. 26.
    Mussini C, Mascia MT, Zanni G et al (1991) A cytomorphological and immunohistochemical study of bone marrow in the diagnosis of essential mixed type II cryoglobulinemia. Haematologica 76(5):389–391PubMedGoogle Scholar
  27. 27.
    Invernizzi F, Galli M, Serino G et al (1983) Secondary and essential cryoglobulinemias. Frequency, nosological classification, and long-term follow-up. Acta Haematol 70(2):73–82PubMedCrossRefGoogle Scholar
  28. 28.
    Merlini G, Stone MJ (2006) Dangerous small B-cell clones. Blood 108(8):2520–2530PubMedCrossRefGoogle Scholar
  29. 29.
    Musset L, Diemert MC, Taibi F et al (1992) Characterization of cryoglobulins by immunoblotting. Clin Chem 38(6):798–802PubMedGoogle Scholar
  30. 30.
    Agnello V, Chung RT, Kaplan LM (1992) A role for hepatitis C virus infection in type II cryoglobulinemia. N Engl J Med 327(21):1490–1495PubMedCrossRefGoogle Scholar
  31. 31.
    Dammacco F, Sansonno D, Piccoli C et al (2000) The lymphoid system in hepatitis C virus infection: autoimmunity, mixed cryoglobulinemia, and overt B-cell malignancy. Semin Liver Dis 20(2):143–157PubMedCrossRefGoogle Scholar
  32. 32.
    Ferri C, Sebastiani M, Giuggioli D et al (2004) Mixed cryoglobulinemia: demographic, clinical, and serologic features and survival in 231 patients. Semin Arthritis Rheum 33(6):355–374PubMedCrossRefGoogle Scholar
  33. 33.
    Silvestri F, Barillari G, Fanin R et al (1996) Risk of hepatitis C virus infection, Waldenstrom’s macroglobulinemia, and monoclonal gammopathies. Blood 88(3):1125–1126PubMedGoogle Scholar
  34. 34.
    Neri S, Pulvirenti D, Mauceri B et al (2005) A case of progression from type II cryoglobulinemia to Waldenstrom’s macroglobulinaemia in a patient with chronic hepatitis C. Clin Exp Med 5(1):40–42PubMedCrossRefGoogle Scholar
  35. 35.
    Alvarez-Ruiz SB, Garcia-Rio I, Aragues M et al (2004) Leucocytoclastic vasculitis, hepatitis C virus-associated mixed cryoglobulinaemia with biclonal gammopathy and Waldenstrom macroglobulinaemia. Br J Dermatol 151(4):937–939PubMedCrossRefGoogle Scholar
  36. 36.
    Siami GA, Siami FS (1999) Plasmapheresis and paraproteinemia: cryoprotein-induced diseases, monoclonal gammopathy, Waldenstrom’s macroglobulinemia, hyperviscosity syndrome, multiple myeloma, light chain disease, and amyloidosis. Ther Apher 3(1):8–19PubMedCrossRefGoogle Scholar
  37. 37.
    Karras A, Noel LH, Droz D et al (2002) Renal involvement in monoclonal (type I) cryoglobulinemia: two cases associated with IgG3 kappa cryoglobulin. Am J Kidney Dis 40(5):1091–1096PubMedCrossRefGoogle Scholar
  38. 38.
    Morel-Maroger L, Basch A, Danon F et al (1970) Pathology of the kidney in Waldenstrom’s macroglobulinemia. Study of sixteen cases. N Engl J Med 283(3):123–129PubMedCrossRefGoogle Scholar
  39. 39.
    Santostefano M, Zanchelli F, Zaccaria A et al (2005) The ultrastructural basis of renal pathology in monoclonal gammopathies. J Nephrol 18(6):659–675PubMedGoogle Scholar
  40. 40.
    Martelo OJ, Schultz DR, Pardo V, Perez-Stable E (1975) Immunologically-mediated renal disease in Waldenstrom’s macroglobulinemia. Am J Med 58(4):567–575PubMedCrossRefGoogle Scholar
  41. 41.
    Meyrier A, Simon P, Mignon F et al (1984) Rapidly progressive (‘crescentic’) glomerulonephritis and monoclonal gammapathies. Nephron 38(3):156–162PubMedCrossRefGoogle Scholar
  42. 42.
    Ropper AH, Gorson KC (1998) Neuropathies associated with paraproteinemia. N Engl J Med 338(22):1601–1607PubMedCrossRefGoogle Scholar
  43. 43.
    Garcia-Bragado F, Fernandez JM, Navarro C et al (1988) Peripheral neuropathy in essential mixed cryoglobulinemia. Arch Neurol 45(11):1210–1214PubMedCrossRefGoogle Scholar
  44. 44.
    Meier C (1985) Polyneuropathy in paraproteinaemia. J Neurol 232(4):204–214PubMedCrossRefGoogle Scholar
  45. 45.
    Vital C, Vallat JM, Deminiere C et al (1982) Peripheral nerve damage during multiple myeloma and Waldenstrom’s macroglobulinemia: an ultrastructural and immunopathologic study. Cancer 50(8):1491–1497PubMedCrossRefGoogle Scholar
  46. 46.
    Nobile-Orazio E (2004) IgM paraproteinaemic neuropathies. Curr Opin Neurol 17(5):599–605PubMedCrossRefGoogle Scholar
  47. 47.
    Vital A, Vital C, Ragnaud JM et al (1991) IgM cryoglobulin deposits in the peripheral nerve. Virchows Arch 418(1):83–85CrossRefGoogle Scholar
  48. 48.
    Mazzola L, Antoine JC, Camdessanche JP et al (2003) Brain hemorrhage as a complication of type I cryoglobulinemia vasculopathy. J Neurol 250(11):1376–1378PubMedCrossRefGoogle Scholar
  49. 49.
    Zlotnick A, Rosenmann E (1975) Renal pathologic findings associated with monoclonal gammopathies. Arch Intern Med 135(1):40–45PubMedCrossRefGoogle Scholar
  50. 50.
    Shaikh A, Habermann TM, Fidler ME et al (2008) Acute renal failure secondary to severe type I cryoglobulinemia following rituximab therapy for Waldenstrom’s macroglobulinemia. Clin Exp Nephrol 12(4):292–295PubMedCrossRefGoogle Scholar
  51. 51.
    Yonemura K, Suzuki T, Sano K et al (2000) A case with acute renal failure complicated by Waldenstrom’s ­macroglobulinemia and cryoglobulinemia. Ren Fail 22(4):511–515PubMedCrossRefGoogle Scholar
  52. 52.
    Dimopoulos MA, Gertz MA, Kastritis E et al (2009) Update on treatment recommendations from the Fourth International Workshop on Waldenstrom’s Macroglobulinemia. J Clin Oncol 27(1):120–126PubMedCrossRefGoogle Scholar
  53. 53.
    Berkman EM, Orlin JB (1980) Use of plasmapheresis and partial plasma exchange in the management of patients with cryoglobulinemia. Transfusion 20(2):171–178PubMedCrossRefGoogle Scholar
  54. 54.
    Valbonesi M, Montani F, Guzzini F et al (1985) Efficacy of discontinuous flow centrifugation compared with cascade filtration in Waldenstrom’s macroglobulinemia: a pilot study. Int J Artif Organs 8(3):165–168PubMedGoogle Scholar
  55. 55.
    Hoffkes HG, Heemann UW, Teschendorf C et al (1995) Hyperviscosity syndrome: efficacy and comparison of plasma exchange by plasma separation and cascade filtration in patients with immunocytoma of Waldenstrom’s type. Clin Nephrol 43(5):335–338PubMedGoogle Scholar
  56. 56.
    Yamashita M, Malchesky PS, Omokawa S et al (1990) Limitation of plasmapheresis in cryoglobulinemia with high levels of cryoglobulins. Prog Clin Biol Res 337:491–494PubMedGoogle Scholar
  57. 57.
    Siami GA, Siami FS (2001) Current topics on cryofiltration technologies. Ther Apher 5(4):283–286PubMedCrossRefGoogle Scholar
  58. 58.
    Kyle RA, Treon SP, Alexanian R et al (2003) Prognostic markers and criteria to initiate therapy in Waldenstrom’s macroglobulinemia: consensus panel recommendations from the second international workshop on Waldenstrom’s macroglobulinemia. Semin Oncol 30(2):116–120PubMedCrossRefGoogle Scholar
  59. 59.
    Treon SP (2009) How I treat Waldenstrom macroglobulinemia. Blood 114(12):2375–2385PubMedCrossRefGoogle Scholar
  60. 60.
    Sansonno D, De Re V, Lauletta G et al (2003) Monoclonal antibody treatment of mixed cryoglobulinemia resistant to interferon alpha with an anti-CD20. Blood 101(10):3818–3826PubMedCrossRefGoogle Scholar
  61. 61.
    Saadoun D, Rosenzwajg M, Landau D et al (2008) Restoration of peripheral immune homeostasis after rituximab in mixed cryoglobulinemia vasculitis. Blood 111(11):5334–5341PubMedCrossRefGoogle Scholar
  62. 62.
    Roccatello D, Baldovino S, Rossi D et al (2008) Rituximab as a therapeutic tool in severe mixed cryoglobulinemia. Clin Rev Allergy Immunol 34(1):111–117PubMedCrossRefGoogle Scholar
  63. 63.
    Sailler L (2008) Rituximab off label use for difficult-to-treat auto-immune diseases: reappraisal of benefits and risks. Clin Rev Allergy Immunol 34(1):103–110PubMedCrossRefGoogle Scholar
  64. 64.
    Saadoun D, Resche-Rigon M, Sene D et al (2008) Rituximab combined with Peg-interferon-ribavirin in refractory hepatitis C virus-associated cryoglobulinaemia vasculitis. Ann Rheum Dis 67(10):1431–1436PubMedCrossRefGoogle Scholar
  65. 65.
    Cacoub P, Delluc A, Saadoun D et al (2008) Anti-CD20 monoclonal antibody (rituximab) treatment for cryoglobulinemic vasculitis: where do we stand? Ann Rheum Dis 67(3):283–287PubMedCrossRefGoogle Scholar
  66. 66.
    Visentini M, Granata M, Veneziano ML et al (2007) Efficacy of low-dose rituximab for mixed cryoglobulinemia. Clin Immunol 125(1):30–33PubMedCrossRefGoogle Scholar
  67. 67.
    Quartuccio L, Soardo G, Romano G et al (2006) Rituximab treatment for glomerulonephritis in HCV-associated mixed cryoglobulinaemia: efficacy and safety in the absence of steroids. Rheumatology (Oxford) 45(7):842–846CrossRefGoogle Scholar
  68. 68.
    Basse G, Ribes D, Kamar N et al (2005) Rituximab therapy for de novo mixed cryoglobulinemia in renal transplant patients. Transplantation 80(11):1560–1564PubMedCrossRefGoogle Scholar
  69. 69.
    Ghobrial IM, Uslan DZ, Call TG et al (2004) Initial increase in the cryoglobulin level after rituximab therapy for type II cryoglobulinemia secondary to Waldenstrom macroglobulinemia does not indicate failure of response. Am J Hematol 77(4):329–330PubMedCrossRefGoogle Scholar
  70. 70.
    Ghijsels E, Lerut E, Vanrenterghem Y, Kuypers D (2004) Anti-CD20 monoclonal antibody (rituximab) treatment for hepatitis C-negative therapy-resistant essential mixed cryoglobulinemia with renal and cardiac failure. Am J Kidney Dis 43(5):e34–e38PubMedCrossRefGoogle Scholar
  71. 71.
    Zaja F, De Vita S, Mazzaro C et al (2003) Efficacy and safety of rituximab in type II mixed cryoglobulinemia. Blood 101(10):3827–3834PubMedCrossRefGoogle Scholar
  72. 72.
    Tedeschi A, Miqueleiz S, Ricci F et al (2007) Fludarabine, cyclophosphamide and rituximab in Waldenstrom’s macroglobulinemia: an effective regimen requiring a new category of response criteria and a delayed assessment of results. ASH annual meeting abstracts, November 16, 2007. Blood 110(11):1290Google Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  1. 1.Department of Clinical TherapeuticsUniversity of Athens School of MedicineAthensGreece

Personalised recommendations