Chromosome Abnormalities in HCV-Related Lymphoproliferation

  • Cristina Mecucci
  • Gianluca Barba
  • Caterina Matteucci


Hepatitis C virus is implicated in the pathogenesis of benign and malignant lymphoproliferative disorders. Although cytogenetic and molecular information are scarce, recurrent patterns of genetic lesions have been recognized in low- and high-grade lymphomas.


Mixed Cryoglobulinemia Splenic Marginal Zone Lymphoma Lymphoplasmacytic Lymphoma Nodal Marginal Zone Lymphoma Metaphase Comparative Genomic Hybridization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agnello V (1997) The etiology and pathophysiology of mixed cryoglobulinemia secondary to hepatitis C virus infection. Springer Semin Immunopathol 19:111–129PubMedCrossRefGoogle Scholar
  2. 2.
    Ivanovski M, Silvestri F, Pozzato G et al (1998) Somatic hypermutation, clonal diversity, and preferential expression of the VH 51p1/VL kv325 immunoglobulin gene combination in hepatitis C virus associated immunocytomas. Blood 91:2433–2442PubMedGoogle Scholar
  3. 3.
    Chan CH, Hadlock KG, Foung SK, Levy S (2001) V(H)1-69 gene is preferentially used by hepatitis C virus-associated B-cell lymphomas and by normal B-cells responding to the E2 viral antigen. Blood 97:1023–1026PubMedCrossRefGoogle Scholar
  4. 4.
    De Re V, De Vita S, Marzotto A et al (2000) Sequence analysis of the immunoglobulin antigen receptor of hepatitis C virus-associated non-Hodgkin lymphomas suggests that the malignant cells are derived from the rheumatoid factor-producing cells that occur mainly in type II cryoglobulinemia. Blood 96:3578–3584PubMedGoogle Scholar
  5. 5.
    Rosa D, Saletti G, De Gregorio E et al (2005) Activation of naïve B lymphocytes via CD81, a pathogenetic mechanism for hepatitis C virus-associated B lymphocyte disorders. Proc Natl Acad Sci USA 102:18544–18549PubMedCrossRefGoogle Scholar
  6. 6.
    Machida K, Cheng KT-H, Pavio N et al (2005) Hepatitis C virus E2-CD81 interaction induces hypermutation of the immunoglobulin gene in B cells. J Virol 79:8079–8089PubMedCrossRefGoogle Scholar
  7. 7.
    Machida K, Cheng KT-N, Sung VM-H et al (2004) Hepatitis C virus induces a mutator phenotype: enhanced mutations of immunoglobulins and protooncogenes. PNAS 101:4262–4267PubMedCrossRefGoogle Scholar
  8. 8.
    Goldberg-Bittman L, Kitay-Cohen Y, Hadari R et al (2008) Random aneuploidy in chronic hepatitis C patients. Cancer Genet Cytogenet 108:20–23CrossRefGoogle Scholar
  9. 9.
    Miura N, Horikawa I, Nishimoto A et al (1997) Progressive telomere shortening and telomerase reactivation during hepatocellular carcinogenesis. Cancer Genet Cytogenet 93:56–62PubMedCrossRefGoogle Scholar
  10. 10.
    Amiel A, Fejgin MD, Goldberg-Bittman L et al (2009) Telomere aggregates in hepatitis C patients. Cancer Invest 27:650–654PubMedCrossRefGoogle Scholar
  11. 11.
    Zhu Z, Wilson AT, Gopalakrishna K et al (2010) Hepatitis C virus core protein enhances telomerase activity in Huh7 cells. J Med Virol 82:239–248PubMedCrossRefGoogle Scholar
  12. 12.
    Limpens J, de Jong D, van Krieken JH et al (1991) Bcl-2/JH rearrangements in benign lymphoid tissues with follicular hyperplasia. Oncogene 6:2271–2276PubMedGoogle Scholar
  13. 13.
    Libra M, De Re V, De Vita S et al (2003) Low frequency of Bcl-2 rearrangement in HCV-associated non-Hodgkin’s lymphoma tissue. Leukemia 17:1433–1436PubMedCrossRefGoogle Scholar
  14. 14.
    Libra M, De Re V, Gloghini A et al (2004) Detection of bcl-2 rearrangement in mucosa-associated lymphoid tissue lymphomas from patients with hepatitis C virus infection. Haematologica 89:873–874PubMedGoogle Scholar
  15. 15.
    Zignego AL, Ferri C, Giannelli F et al (2002) Prevalence of bcl-2 rearrangement in patients with hepatitis C virus-related mixed cryoglobulinemia with or without B-cell lymphomas. Ann Intern Med 137:571–580PubMedCrossRefGoogle Scholar
  16. 16.
    Zuckerman E, Zuckerman T, Sahar D et al (2001) The effect of antiviral therapy on t(14;18) translocation and immunoglobulin gene rearrangement in patients with chronic hepatitis C virus infection. Blood 97:1555–1559PubMedCrossRefGoogle Scholar
  17. 17.
    Kitay-Cohen Y, Amiel A, Hilzenrat N et al (2000) Bcl-2 rearrangement in patients with chronic hepatitis C associated with essential mixed cryoglobulinemia type II. Blood 96:2910–2912PubMedGoogle Scholar
  18. 18.
    Matteucci C, Bracci M, Barba G et al (2008) Different genomic imbalances in low- and high-grade HCV-related lymphomas. Leukemia 22:219–222PubMedCrossRefGoogle Scholar
  19. 19.
    Sansonno D, Tucci FA, De Re V et al (2005) HCV-associated B cell clonalities in the liver do not carry the t(14;18) chromosomal translocation. Hepatology 42:1019–1027PubMedCrossRefGoogle Scholar
  20. 20.
    Yasukawa M, Bando S, Dölken G et al (2001) Low frequency of BCL-2/J(H) translocation in peripheral blood lymphocytes of healthy Japanese individuals. Blood 98:486–488PubMedCrossRefGoogle Scholar
  21. 21.
    Roulland S, Lebailly P, Lecluse Y et al (2004) Characterization of the t(14;18) BCL2-IGH translocation in farmers occupationally exposed to pesticides. Cancer Res 64:2264–2269PubMedCrossRefGoogle Scholar
  22. 22.
    Giannini C, Gragnani L, Piluso A et al (2008) Can BAFF promotor polymorphism be a predisposing condition for HCV-related mixed cryoglobulinemia? Blood 112:4353–4354PubMedCrossRefGoogle Scholar
  23. 23.
    De Re V, Caggiari L, De Vita S et al (2007) Genetic insights into the disease mechanisms of type II mixed cryoglobulinemia induced by hepatitis C virus. Dig Liver Dis 39:S65–S71PubMedCrossRefGoogle Scholar
  24. 24.
    Fabris M, Quartuccio L, Salvin S et al (2008) Fibronectin gene polymorphisms are associated with the development of B-cell lymphoma in type II mixed cryoglobulinemia. Ann Rheum Dis 67:80–83PubMedCrossRefGoogle Scholar
  25. 25.
    Agrawal S, Matutes E, Voke J et al (1994) Persistent polyclonal B cell lymphocytosis. Leuk Res 18:791–795PubMedCrossRefGoogle Scholar
  26. 26.
    Callet-Bauchu E, Gazzo S, Poncet C et al (1999) Distinct chromosome 3 abnormalities in persistent polyclonal B cell lymphocytosis. Genes Chromosomes Cancer 26:221–228PubMedCrossRefGoogle Scholar
  27. 27.
    Inagaki H (2007) Mucosa-associated lymphoid tissue lymphoma: molecular pathogenesis and clinic-pathological significance. Pathol Int 57:474–484PubMedCrossRefGoogle Scholar
  28. 28.
    Gruszka-Westwood AM, Matutes E, Coignet LJ et al (1999) The incidence of trisomy 3 in splenic lymphoma with villous lymphocytes: a study by FISH. Br J Haematol 104:600–604PubMedCrossRefGoogle Scholar
  29. 29.
    Brynes RK, Almaguer PD, Leathery KE et al (1996) Numerical cytogenetic abnormalities of chromosomes 3, 7, and 12 in marginal zone B-cell lymphomas. Mod Pathol 9:995–1000PubMedGoogle Scholar
  30. 30.
    Wotherspoon AC, Finn TM, Isaacson PG (1995) Trisomy 3 in low-grade B-cell lymphomas of mucosa associated lymphoid tissue. Blood 85:2000–2004PubMedGoogle Scholar
  31. 31.
    Solé F, Salido M, Espinet B et al (2001) Splenic marginal zone B-cell lymphomas: two cytogenetic subtypes, one with gain of 3q and the other with loss of 7q. Haematologica 86:71–77PubMedGoogle Scholar
  32. 32.
    Dierlamm J, Pittaluga S, Wlodarska I et al (1996) Marginal zone B-cell lymphomas of different sites share similar cytogenetic and morphological features. Blood 87:299–307PubMedGoogle Scholar
  33. 33.
    Novara F, Arcaini L, Merli M et al (2009) High-resolution genome-wide array comparative genomic hybridization in splenic marginal zone B-cell lymphoma. Hum Pathol 40:1628–1637PubMedCrossRefGoogle Scholar
  34. 34.
    Tornillo L, Carafa V, Richter J et al (2000) Marked genetic similarities between hepatitis B virus-positive and hepatitis C virus-positive hepatocellular carcinomas. J Pathol 192:307–312PubMedCrossRefGoogle Scholar
  35. 35.
    Algara P, Mateo MS, Sanchez-Beato M et al (2002) Analysis of the IgV(H) somatic mutations in splenic marginal zone lymphoma defines a group of unmutated cases with frequent 7q deletion and adverse clinical course. Blood 99:1299–1304PubMedCrossRefGoogle Scholar
  36. 36.
    Du MQ, Isaccson PG (2002) Gastric MALT lymphoma: from aetiology to treatment. Lancet Oncol 3:97–104PubMedCrossRefGoogle Scholar
  37. 37.
    Barth TF, Döhner H, Werner CA et al (1998) Characteristic pattern of chromosomal gains and losses in primary large B-cell lymphomas of the gastro-intestinal tract. Blood 91:4321–4330PubMedGoogle Scholar
  38. 38.
    Zhao E, Li Y, Fu X et al (2004) Cloning and expression of human GTDC1 gene (glycosyltransferase-like domain containing 1) from human fetal library. DNA Cell Biol 23:183–187PubMedCrossRefGoogle Scholar
  39. 39.
    Zweier C, Albrecht B, Mitulla B et al (2002) “Mowat-Wilson” syndrome with and without Hirschsprung disease is a distinct, recognizable multiple congenital anomalies-mental retardation syndrome caused by mutation in the zinc finger homeo box 1B gene. Am J Med Genet 108:177–181PubMedCrossRefGoogle Scholar
  40. 40.
    Comijn J, Berx G, Vermassen P et al (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7:1276–1278CrossRefGoogle Scholar
  41. 41.
    Maeda G, Chiba T, Okazaki M et al (2005) Expression of SIP1 in oral squamous cell carcinomas: implications for E-cadherin expression and tumor progression. Int J Oncol 27:1535–1541PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Cristina Mecucci
    • 1
  • Gianluca Barba
    • 2
  • Caterina Matteucci
    • 2
  1. 1.Hematology and Clinical Immunology Unit, Department of Clinical and Experimental MedicineUniversity of PerugiaPerugiaItaly
  2. 2.Hematology and Clinical Immunology Unit, Clinical and Experimental MedicineUniversity of PerugiaPerugiaItaly

Personalised recommendations