Experimental Models of Mixed Cryoglobulinemia

  • Charles E. Alpers
  • Tomasz A. Wietecha
  • Kelly L. Hudkins


Only a few animal models of cryoglobulinemic glomerulonephritis have been characterized. Most murine models of mixed cryoglobulinemia occur in the context of autoimmune dysregulation and most resemble diseases such as systemic lupus erythematosus. The thymic stromal lymphopoietin transgenic mouse model of type III mixed cryoglobulinemia currently best replicates the features of cryoglobulinemic membranoproliferative glomerulonephritis (MPGN) as it occurs in humans with mixed cryoglobulinemia, particularly humans infected with hepatitis C virus. This model has been used to test the importance of the inhibitory Fc receptor FcRllb in limiting the severity of disease expression, in demonstrating the deleterious effect of infiltrating monocyte/macrophage populations that is a characteristic feature of this type of glomerulonephritis, and in demonstrating the potential reversibility of MPGN with appropriate therapeutic interventions.


Mixed Cryoglobulinemia Glomerular Injury Membranoproliferative Glomerulonephritis Capillary Basement Membrane Thymic Stromal Lymphopoietin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work reported here was supported by grants from the US National Institutes of Health (DK68802) and an unrestricted grant from the Genzyme Renal Innovations Program.


  1. 1.
    Kidney Disease: Improving Global Outcomes (KDIGO) (2008) KDIGO clinical practice guidelines for the prevention, diagnosis, evaluation, and treatment of hepatitis c in chronic kidney disease. Kidney Int Suppl (109):S1–S99Google Scholar
  2. 2.
    Agnello V (1997) The etiology and pathophysiology of mixed cryoglobulinemia secondary to hepatitis C virus infection. Springer Semin Immunopathol 19:111–129PubMedCrossRefGoogle Scholar
  3. 3.
    Alpers CE, Smith KD (2008) Cryoglobulinemia and renal disease. Curr Opin Nephrol Hypertens 17:243–249PubMedCrossRefGoogle Scholar
  4. 4.
    D’Amico G (1998) Renal involvement in hepatitis C infection: cryoglobulinemic glomerulonephritis. Kidney Int 54:650–671PubMedCrossRefGoogle Scholar
  5. 5.
    Hoofnagle JH (2002) Course and outcome of hepatitis C. Hepatology 36:S21–S29PubMedCrossRefGoogle Scholar
  6. 6.
    Johnson RJ, Gretch DR, Yamabe H et al (1993) Membrano­proliferative glomerulonephritis associated with hepatitis C virus infection. N Engl J Med 328:465–470PubMedCrossRefGoogle Scholar
  7. 7.
    Johnson RJ, Willson R, Yamabe H et al (1994) Renal manifestations of hepatitis C virus infection. Kidney Int 46:1255–1263PubMedCrossRefGoogle Scholar
  8. 8.
    Kamar N, Izopet J, Alric L et al (2008) Hepatitis C virus-related kidney disease: an overview. Clin Nephrol 69:149–160PubMedGoogle Scholar
  9. 9.
    Roccatello D, Fornasieri A, Giachino O et al (2007) Multicenter study on hepatitis C virus-related cryoglobulinemic glomerulonephritis. Am J Kidney Dis 49:69–82PubMedCrossRefGoogle Scholar
  10. 10.
    D’Amico G, Fornasieri A (1995) Cryoglobulinemic glomerulonephritis: a membranoproliferative glomerulonephritis induced by hepatitis C virus. Am J Kidney Dis 25:361–369PubMedCrossRefGoogle Scholar
  11. 11.
    Smith KD, Alpers CE (2005) Pathogenic mechanisms in membranoproliferative glomerulonephritis. Curr Opin Nephrol Hypertens 14:396–403PubMedCrossRefGoogle Scholar
  12. 12.
    Barth H, Robinet E, Liang TJ et al (2008) Mouse models for the study of HCV infection and virus-host interactions. J Hepatol 49:134–142PubMedCrossRefGoogle Scholar
  13. 13.
    Brass V, Moradpour D, Blum HE (2007) Hepatitis C virus infection: in vivo and in vitro models. J Viral Hepat 14(Suppl 1):64–67PubMedCrossRefGoogle Scholar
  14. 14.
    Guidotti LG, Chisari FV (2006) Immunobiology and pathogenesis of viral hepatitis. Annu Rev Pathol 1:23–61PubMedCrossRefGoogle Scholar
  15. 15.
    Boonstra A, van der Laan LJ, Vanwolleghem T et al (2009) Experimental models for hepatitis C viral infection. Hepatology 50:1646–1655PubMedCrossRefGoogle Scholar
  16. 16.
    Ploss A, Rice CM (2009) Towards a small animal model for hepatitis C. EMBO Rep 10:1220–1227PubMedCrossRefGoogle Scholar
  17. 17.
    Kikuchi S, Pastore Y, Fossati-Jimack L et al (2002) A ­transgenic mouse model of autoimmune glomerulonephritis and necrotizing arteritis associated with cryoglobulinemia. J Immunol 169:4644–4650PubMedGoogle Scholar
  18. 18.
    Moll S, Schaeren-Wiemers N, Wohlwend A et al (1996) Protease nexin 1 in the murine kidney: glomerular ­localization and up-regulation in glomerulopathies. Kidney Int 50:1936–1945PubMedCrossRefGoogle Scholar
  19. 19.
    Pastore Y, Lajaunias F, Kuroki A et al (2001) An experimental model of cryoglobulin-associated vasculitis in mice. Springer Semin Immunopathol 23:315–329PubMedCrossRefGoogle Scholar
  20. 20.
    Guo S, Kowalewska J, Wietecha TA et al (2008) Renin-angiotensin system blockade is renoprotective in immune complex-mediated glomerulonephritis. J Am Soc Nephrol 19:1168–1176PubMedCrossRefGoogle Scholar
  21. 21.
    Guo S, Muhlfeld AS, Wietecha TA et al (2009) Deletion of activating Fcgamma receptors does not confer protection in murine cryoglobulinemia-associated membranoproliferative glomerulonephritis. Am J Pathol 175:107–118PubMedCrossRefGoogle Scholar
  22. 22.
    Iyoda M, Hudkins KL, Becker-Herman S et al (2009) Imatinib suppresses cryoglobulinemia and secondary membranoproliferative glomerulonephritis. J Am Soc Nephrol 20:68–77PubMedCrossRefGoogle Scholar
  23. 23.
    Iyoda M, Hudkins KL, Wietecha TA et al (2007) All-trans-retinoic acid aggravates cryoglobulin-associated membranoproliferative glomerulonephritis in mice. Nephrol Dial Transplant 22:3451–3461PubMedCrossRefGoogle Scholar
  24. 24.
    Muhlfeld AS, Segerer S, Hudkins K et al (2003) Deletion of the Fcgamma receptor iib in thymic stromal lymphopoietin transgenic mice aggravates membranoproliferative glomerulonephritis. Am J Pathol 163:1127–1136PubMedCrossRefGoogle Scholar
  25. 25.
    Muhlfeld AS, Segerer S, Hudkins K et al (2004) Over­expression of complement inhibitor Crry does not prevent cryoglobulin-associated membranoproliferative glomerulonephritis. Kidney Int 65:1214–1223PubMedCrossRefGoogle Scholar
  26. 26.
    Taneda S, Segerer S, Hudkins KL et al (2001) Cryoglobu­linemic glomerulonephritis in thymic stromal lymphopoietin transgenic mice. Am J Pathol 159:2355–2369PubMedCrossRefGoogle Scholar
  27. 27.
    Ziegler SF, Artis D (2010) Sensing the outside world: TSLP regulates barrier immunity. Nat Immunol 11:289–293PubMedCrossRefGoogle Scholar
  28. 28.
    Ziegler SF, Liu YJ (2006) Thymic stromal lymphopoietin in normal and pathogenic T cell development and function. Nat Immunol 7:709–714PubMedCrossRefGoogle Scholar
  29. 29.
    Turnberg D, Cook HT (2005) Complement and glomerulonephritis: new insights. Curr Opin Nephrol Hypertens 14:223–228PubMedCrossRefGoogle Scholar
  30. 30.
    Quigg RJ, He C, Lim A et al (1998) Transgenic mice overexpressing the complement inhibitor Crry as a soluble protein are protected from antibody-induced glomerular injury. J Exp Med 188:1321–1331PubMedCrossRefGoogle Scholar
  31. 31.
    Bao L, Haas M, Boackle SA et al (2002) Transgenic expression of a soluble complement inhibitor protects against renal disease and promotes survival in MRL/lpr mice. J Immunol 168:3601–3607PubMedGoogle Scholar
  32. 32.
    Holers VM, Thurman JM (2004) The alternative pathway of complement in disease: opportunities for therapeutic targeting. Mol Immunol 41:147–152PubMedCrossRefGoogle Scholar
  33. 33.
    Thurman JM, Holers VM (2006) The central role of the alternative complement pathway in human disease. J Immunol 176:1305–1310PubMedGoogle Scholar
  34. 34.
    Wietecha TA, Hudkins KL, Iyoda M et al (2007) Inhibition of complement pathways by combined overexpression of the murine protein Crry and the deletion of factor b in thymic stromal lymphopoietin mice aggravates cryoglobulin-associated membranoproliferative glomerulonephritis. American Society of Nephrology Annual Meeting, San Francisco, CA. J Am Soc Nephrol 18:411AGoogle Scholar
  35. 35.
    Wietecha TW, Hudkins KL, Iyoda M et al (2006) Deletion of the murine factor B in thymic stromal lymphopoietin transgenic mice aggravates cryoglobulin-associated membranoproliferative glomerulonephritis. American Society of Nephrology Annual Meeting. San Diego, CA. J Am Soc Nephrol 17:510AGoogle Scholar
  36. 36.
    Couser WG (2003) Complement inhibitors and glomerulonephritis: are we there yet? J Am Soc Nephrol 14:815–818PubMedCrossRefGoogle Scholar
  37. 37.
    Nimmerjahn F, Ravetch JV (2008) Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8:34–47PubMedCrossRefGoogle Scholar
  38. 38.
    Nimmerjahn F, Ravetch JV (2007) Fc-receptors as regulators of immunity. Adv Immunol 96:179–204PubMedCrossRefGoogle Scholar
  39. 39.
    Clynes R, Dumitru C, Ravetch JV (1998) Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 279:1052–1054PubMedCrossRefGoogle Scholar
  40. 40.
    Nakamura A, Yuasa T, Ujike A et al (2000) Fcgamma receptor iib-deficient mice develop goodpasture’s syndrome upon immunization with type iv collagen: a novel murine model for autoimmune glomerular basement membrane disease. J Exp Med 191:899–906PubMedCrossRefGoogle Scholar
  41. 41.
    Suzuki Y, Shirato I, Okumura K et al (1998) Distinct contribution of Fc receptors and angiotensin ii-dependent pathways in anti-GBM glomerulonephritis. Kidney Int 54:1166–1174PubMedCrossRefGoogle Scholar
  42. 42.
    Park SY, Ueda S, Ohno H et al (1998) Resistance of Fc receptor- deficient mice to fatal glomerulonephritis. J Clin Invest 102:1229–1238PubMedCrossRefGoogle Scholar
  43. 43.
    Tarzi RM, Davies KA, Robson MG et al (2002) Nephrotoxic nephritis is mediated by Fcgamma receptors on circulating leukocytes and not intrinsic renal cells. Kidney Int 62:2087–2096PubMedCrossRefGoogle Scholar
  44. 44.
    Ellsworth JL, Maurer M, Harder B et al (2008) Targeting immune complex-mediated hypersensitivity with recombinant soluble human FcgammaRIA (CD64A). J Immunol 180:580–589PubMedGoogle Scholar
  45. 45.
    Woodle ES, Xu D, Zivin RA et al (1999) Phase I trial of a humanized, Fc receptor nonbinding OKT3 antibody, huOKT3gamma1(Ala-Ala) in the treatment of acute renal allograft rejection. Transplantation 68:608–616PubMedCrossRefGoogle Scholar
  46. 46.
    Marino M, Ruvo M, De Falco S et al (2000) Prevention of systemic lupus erythematosus in MRL/lpr mice by ­administration of an immunoglobulin-binding peptide. Nat Biotechnol 18:735–739PubMedCrossRefGoogle Scholar
  47. 47.
    Anthony RM, Nimmerjahn F, Ashline DJ et al (2008) Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320:373–376PubMedCrossRefGoogle Scholar
  48. 48.
    Kaveri SV, Lacroix-Desmazes S, Bayry J (2008) The antiinflammatory IgG. N Engl J Med 359:307–309PubMedCrossRefGoogle Scholar
  49. 49.
    Kowalewska J, Muhlfeld AS, Hudkins KL et al (2007) Thymic stromal lymphopoietin transgenic mice develop cryoglobulinemia and hepatitis with similarities to human hepatitis c liver disease. Am J Pathol 170:981–989PubMedCrossRefGoogle Scholar
  50. 50.
    Banas MC, Banas B, Hudkins KL et al (2008) TLR4 links podocytes with the innate immune system to mediate glomerular injury. J Am Soc Nephrol 19:704–713PubMedCrossRefGoogle Scholar
  51. 51.
    Johnson GB, Brunn GJ, Platt JL (2003) Activation of mammalian toll-like receptors by endogenous agonists. Crit Rev Immunol 23:15–44PubMedCrossRefGoogle Scholar
  52. 52.
    Taneda S, Hudkins KL, Cui Y et al (2003) Growth factor expression in a murine model of cryoglobulinemia. Kidney Int 63:576–590PubMedCrossRefGoogle Scholar
  53. 53.
    Banas MC, Hudkins KL, Wietecha TA et al (2006) Treatment of experimental membranoproliferative glomerulonephritis with a neutralizing anti-TGF-beta1 antibody. American Society of Nephrology Annual Meeting, San Diego, CA. J Am Soc Nephrol 17:179AGoogle Scholar
  54. 54.
    Kowalewska J, Hudkins KL, Taneda S et al (2004) Treatment with PDGF r-beta antagonist does not ameliorate cryoglobulin-associated membraphoproliferative glomerulonephritis in thymic stromal lymphopoietin (TSLP) transgenic mice. American Society of Nephrology Annual Meeting, St Louis, MO. J Am Soc Nephrol 15:698AGoogle Scholar
  55. 55.
    Segerer S, Hudkins KL, Taneda S et al (2002) Oral interferon-alpha treatment of mice with cryoglobulinemic glomerulonephritis. Am J Kidney Dis 39:876–888PubMedCrossRefGoogle Scholar
  56. 56.
    Guo S, Wietecha T, Hudkins K (2008) CD 14 is a mediator of kidney injury in murine cryoglobulinemia-associated membranoproliferative glomerulonephritis (MPGN), American Society of Nephrology Annual Meeting, Philadelphia, 2008Google Scholar
  57. 57.
    Kobayashi T, Wietecha T, Hudkins KL et al (2010) CD 14 mediates inflammation and kidney injury of MPGN in the TSLP model cryoglobulinemic glomerulonephritis independent of TLR4: American Society of Nephrology Annual Meeting, Denver, 2010Google Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  • Charles E. Alpers
    • 1
    • 2
  • Tomasz A. Wietecha
    • 1
  • Kelly L. Hudkins
    • 1
  1. 1.Department of PathologyUniversity of WashingtonSeattleUSA
  2. 2.Division of Nephrology, Department of MedicineUniversity of WashingtonSeattleUSA

Personalised recommendations