Molecular Insights into the Disease Mechanisms of Type II Mixed Cryoglobulinemia

  • Valli De Re
  • Marica Garziera


Several epidemiological and clinico-pathological observations suggest that the pathogenesis of type II MC (MC-II) is multifactorial and multistep. Strongly associated with MC-II is the presence of cryoprecipitates, thought to be involved in the maintenance and perpetuation of the disease. The biological characteristics of MC-II cryoglobulins are extremely relevant to the etiopathogenetic mechanisms linking hepatitis C virus antigen stimulation to autoimmunity and to lymphoproliferation. Currently, there are no data clearly demonstrating the component responsible for cryoprecipitation. However, several findings from studies of cryoimmunoglobulin glycosylation together with the characterization of monoclonal IgM rheumatoid factor activity/recognition may provide a better understanding of the pathologic process linking cryoprecipitation with hepatitis C virus infection.


Rheumatoid Arthritis Patient Celiac Disease Rheumatoid Factor Rheumatoid Factor Activity Mixed Cryoglobulinemic Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Di Stasio E, Bizzarri P, Bove M et al (2003) Analysis of the dynamics of cryoaggregation by light-scattering spectrometry. Clin Chem Lab Med 41:152–158PubMedCrossRefGoogle Scholar
  2. 2.
    Di Stasio E, Bizzarri P, Casato M et al (2004) Cl- regulates cryoglobulin structure: a new hypothesis for the physiopathological mechanism of temperature non-dependent cryoprecipitation. Clin Chem Lab Med 42:614–620PubMedCrossRefGoogle Scholar
  3. 3.
    Vallas V, Farrugia W, Raison RL et al (2007) Dissimilar aggregation processes govern precipitation and gelation of human IgM cryoglobulins. J Mol Recognit 20:90–96PubMedCrossRefGoogle Scholar
  4. 4.
    Fabris M, Quartuccio L, Salvin S et al (2008) Fibronectin gene polymorphisms are associated with the development of B-cell lymphoma in type II mixed cryoglobulinemia. Ann Rheum Dis 67:80–83PubMedCrossRefGoogle Scholar
  5. 5.
    Banda NK, Wood AK, Takahashi K et al (2008) Initiation of the alternative pathway of murine complement by immune complexes is dependent on N-glycans in IgG antibodies. Arthritis Rheum 58:3081–3089PubMedCrossRefGoogle Scholar
  6. 6.
    Kuroda Y, Kuroki A, Kikuchi S et al (2005) A critical role for sialylation in cryoglobulin activity of murine IgG3 monoclonal antibodies. J Immunol 175:1056–1061PubMedGoogle Scholar
  7. 7.
    Yagi H, Takahashi N, Yamaguchi Y, Kato K (2004) Temperature-dependent isologous Fab-Fab interaction that mediates ­cryocrystallization of a monoclonal immunoglobulin G. Mol Immunol 41:1211–1215PubMedCrossRefGoogle Scholar
  8. 8.
    De Re V, De Vita S, Sansonno D et al (2006) Type II mixed cryoglobulinaemia as an oligo rather than a mono B-cell disorder: evidence from GeneScan and MALDI-TOF analyses. Rheumatology (Oxford) 45:685–693CrossRefGoogle Scholar
  9. 9.
    De Re V, De Vita S, Marzotto A et al (2000) Sequence analysis of the immunoglobulin antigen receptor of hepatitis C virus-associated non-Hodgkin lymphomas suggests that the malignant cells are derived from the rheumatoid factor-producing cells that occur mainly in type II cryoglobulinemia. Blood 96:3578–3584PubMedGoogle Scholar
  10. 10.
    De Re V, De Vita S, Gasparotto D et al (2002) Salivary gland B cell lymphoproliferative disorders in Sjogren’s syndrome present a restricted use of antigen receptor gene segments similar to those used by hepatitis C virus-associated non-Hodgkins’s lymphomas. Eur J Immunol 32:903–910PubMedCrossRefGoogle Scholar
  11. 11.
    Ramsland PA, Shan L, Moomaw CR et al (2000) An unusual human IgM antibody with a protruding HCDR3 and high avidity for its peptide ligands. Mol Immunol 37:295–310PubMedCrossRefGoogle Scholar
  12. 12.
    Ramsland PA, Terzyan SS, Cloud G et al (2006) Crystal structure of a glycosylated Fab from an IgM cryoglobulin with properties of a natural proteolytic antibody. Biochem J 395:473–481PubMedCrossRefGoogle Scholar
  13. 13.
    Kuroki A, Kuroda Y, Kikuchi S et al (2002) Level of galactosylation determines cryoglobulin activity of murine IgG3 monoclonal rheumatoid factor. Blood 99:2922–2928PubMedCrossRefGoogle Scholar
  14. 14.
    Sansonno D, Tucci FA, De Re V et al (2005) HCV-associated B cell clonalities in the liver do not carry the t(14;18) chromosomal translocation. Hepatology 42:1019–1027PubMedCrossRefGoogle Scholar
  15. 15.
    Mazzaro C, De Re V, Spina M et al (2009) Pegylated-interferon plus ribavirin for HCV-positive indolent non-Hodgkin lymphomas. Br J Haematol 145:255–257PubMedCrossRefGoogle Scholar
  16. 16.
    Vallisa D, Bernuzzi P, Arcaini L et al (2005) Role of anti-hepatitis C virus (HCV) treatment in HCV-related, low-grade, B-cell, non-Hodgkin’s lymphoma: a multicenter Italian experience. J Clin Oncol 23:468–473PubMedCrossRefGoogle Scholar
  17. 17.
    Hermine O, Lefrere F, Bronowicki JP et al (2002) Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. N Engl J Med 347:89–94PubMedCrossRefGoogle Scholar
  18. 18.
    Sansonno D, De Re V, Lauletta G et al (2003) Monoclonal antibody treatment of mixed cryoglobulinemia resistant to interferon alpha with an anti-CD20. Blood 101:3818–3826PubMedCrossRefGoogle Scholar
  19. 19.
    Zaja F, De Vita S, Mazzaro C et al (2003) Efficacy and safety of rituximab in type II mixed cryoglobulinemia. Blood 101:3827–3834PubMedCrossRefGoogle Scholar
  20. 20.
    Racanelli V, Frassanito MA, Leone P et al (2006) Antibody production and in vitro behavior of CD27-defined B-cell subsets: persistent hepatitis C virus infection changes the rules. J Virol 80:3923–3934PubMedCrossRefGoogle Scholar
  21. 21.
    Charles ED, Green RM, Marukian S et al (2008) Clonal expansion of immunoglobulin M+CD27+ B cells in HCV-associated mixed cryoglobulinemia. Blood 111:1344–1356PubMedCrossRefGoogle Scholar
  22. 22.
    Sansonno D, Carbone A, De Re V, Dammacco F (2007) Hepatitis C virus infection, cryoglobulinaemia, and beyond. Rheumatology (Oxford) 46:572–578CrossRefGoogle Scholar
  23. 23.
    De Re V, Sansonno D, Simula MP et al (2006) HCV-NS3 and IgG-Fc crossreactive IgM in patients with type II mixed cryoglobulinemia and B-cell clonal proliferations. Leukemia 20:1145–1154PubMedCrossRefGoogle Scholar
  24. 24.
    Carayannopoulos MO, Potter KN, Li Y et al (2000) Evidence that human immunoglobulin M rheumatoid factors can be derived from the natural autoantibody pool and undergo an antigen driven immune response in which somatically mutated rheumatoid factors have lower affinities for immunoglobulin G Fc than their germline counterparts. Scand J Immunol 51:327–336PubMedCrossRefGoogle Scholar
  25. 25.
    Yang L, Hakoda M, Iwabuchi K et al (2004) Rheumatoid factors induce signaling from B cells, leading to Epstein-Barr virus and B-cell activation. J Virol 78(18):9918–9923PubMedCrossRefGoogle Scholar
  26. 26.
    Duquerroy S, Stura EA, Bressanelli S et al (2007) Crystal structure of a human autoimmune complex between IgM rheumatoid factor RF61 and IgG1 Fc reveals a novel epitope and evidence for affinity maturation. J Mol Biol 368:1321–1331PubMedCrossRefGoogle Scholar
  27. 27.
    Corper AL, Sohi MK, Bonagura VR et al (1997) Structure of human IgM rheumatoid factor Fab bound to its autoantigen IgG Fc reveals a novel topology of antibody-antigen interaction. Nat Struct Biol 4:374–381PubMedCrossRefGoogle Scholar
  28. 28.
    De Re V, Pavan A, Sansonno S et al (2009) Clonal CD27+ CD19+ B cell expansion through inhibition of FC gammaIIR in HCV(+) cryoglobulinemic patients. Ann N Y Acad Sci 1173:326–333PubMedCrossRefGoogle Scholar
  29. 29.
    Tamir I, Stolpa JC, Helgason CD et al (2000) The RasGAP-binding protein p62dok is a mediator of inhibitory FcgammaRIIB signals in B cells. Immunity 12:347–358PubMedCrossRefGoogle Scholar
  30. 30.
    Prikhod’ko EA, Prikhod’ko GG, Siegel RM et al (2004) The NS3 protein of hepatitis C virus induces caspase-8-mediated apoptosis independent of its protease or helicase activities. Virology 329:53–67PubMedCrossRefGoogle Scholar
  31. 31.
    Foy E, Li K, Wang C et al (2003) Regulation of interferon regulatory factor-3 by the hepatitis C virus serine protease. Science 300:1145–1148PubMedCrossRefGoogle Scholar
  32. 32.
    Ferri S, Dal Pero F, Bortoletto G et al (2006) Detailed analysis of the E2-IgM complex in hepatitis C-related type II mixed cryoglobulinaemia. J Viral Hepat 13:166–176PubMedCrossRefGoogle Scholar
  33. 33.
    Landau DA, Saadoun D, Calabrese LH, Cacoub P (2007) The pathophysiology of HCV induced B-cell clonal disorders. Autoimmun Rev 6:581–587PubMedCrossRefGoogle Scholar
  34. 34.
    Rosa D, Saletti G, De Gregorio E et al (2005) Activation of naive B lymphocytes via CD81, a pathogenetic mechanism for hepatitis C virus-associated B lymphocyte disorders. Proc Natl Acad Sci USA 102:18544–18549PubMedCrossRefGoogle Scholar
  35. 35.
    Perotti M, Ghidoli N, Altara R et al (2008) Hepatitis C virus (HCV)-driven stimulation of subfamily-restricted natural IgM antibodies in mixed cryoglobulinemia. Autoimmun Rev 7:468–472PubMedCrossRefGoogle Scholar
  36. 36.
    Charles ED, Dustin LB (2009) Hepatitis C virus-induced cryoglobulinemia. Kidney Int 76:818–824PubMedCrossRefGoogle Scholar
  37. 37.
    Cacoub P, Renou C, Kerr G et al (2001) Influence of HLA-DR phenotype on the risk of hepatitis C virus-­associated mixed cryoglobulinemia. Arthritis Rheum 44:2118–2124PubMedCrossRefGoogle Scholar
  38. 38.
    De Re V, Caggiari L, De Vita S et al (2007) Genetic insights into the disease mechanisms of type II mixed cryoglobulinemia induced by hepatitis C virus. Dig Liver Dis 39:S65–S71PubMedCrossRefGoogle Scholar
  39. 39.
    De Re V, Caggiari L, Simula MP et al (2007) Role of the HLA class II: HCV-related disorders. Ann N Y Acad Sci 1107:308–318PubMedCrossRefGoogle Scholar
  40. 40.
    Abbas OM, Omar NA, Zaghla HE, Faramawi MF (2009) Schistosoma mansoni coinfection could have a protective effect against mixed cryoglobulinaemia in hepatitis C patients. Liver Int 29:1065–1070PubMedCrossRefGoogle Scholar
  41. 41.
    Artandi SE, Canfield SM, Tao MH et al (1991) Molecular analysis of IgM rheumatoid factor binding to chimeric IgG. J Immunol 146:603–610PubMedGoogle Scholar
  42. 42.
    Bonagura VR, Artandi SE, Davidson A et al (1993) Mapping studies reveal unique epitopes on IgG recognized by rheumatoid arthritis-derived monoclonal rheumatoid factors. J Immunol 151:3840–3852PubMedGoogle Scholar
  43. 43.
    Sene D, Ghillani-Dalbin P, Amoura Z et al (2009) Rituximab may form a complex with IGmkappa mixed cryoglobulin and induce severe systemic reactions in patients with hepatitis C virus-induced vasculitis. Arthritis Rheum 60:3848–3855PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2012

Authors and Affiliations

  1. 1.Clinical and Experimental Pharmacology, Department of Molecular Oncology and Translational Medicine, (DOMERT), Centro di Riferimento Oncologico, IRCCSNational Cancer InstituteAvianoItaly
  2. 2.Clinical and Experimental Pharmacology, Department of Molecular Oncology and Translational Medicine, DOMERT, Centro di Riferimento Oncologico, IRCCSNational Cancer InstituteAvianoItaly

Personalised recommendations