Present and Future of Sports Medicine

  • K. D. Illingworth
  • S. M. Vyas
  • V. Musahl
  • F. H. Fu


Sports-related injuries are expected to increase with time and health-care professionals of all disciplines are becoming aware of common injuries and their treatment. Sports medicine is expanding in recognition of the fact that: (1) athletes participate in sport-specific training year round and often in multiple sports, (2) there has been a steady increase in “weekend warriors”, (3) the patient population is better educated and has higher performance expectations and a greater awareness of physical fitness, and (4) recreational activities for the general population have increased tremendously. This chapter provides a brief overview of the current state of management of common sport-related injuries, including injuries in the shoulder, elbow, hip, knee, foot and ankle, head and spine, and concussion. It also describes some of the current controversies existing in these areas. The topics of cartilage, soft tissue injury, stem cells in orthopedics, proprioception in sports, biologics and imaging are also addressed in terms of current issues and what the future holds for their application in orthopedic sports medicine.


Anterior Cruciate Ligament Rotator Cuff Anterior Cruciate Ligament Reconstruction Posterior Cruciate Ligament Femoral Tunnel 


  1. 1.
    Morse K, Davis AD, Afra R et al (2008) Arthroscopic versus mini-open rotator fcuff repair: a comprehensive review and meta-analysis. Am J Sports Med 36:1824–1828PubMedCrossRefGoogle Scholar
  2. 2.
    Mohtadi NG, Hollinshead RM, Sasyniuk TM et al (2008) A randomized clinical trial comparing open to arthroscopic acromioplasty with mini-open rotator cuff repair for full-thickness rotator cuff tears: disease-specific quality of life outcome at an average 2-year followup. Am J Sports Med 36:1043–1051PubMedCrossRefGoogle Scholar
  3. 3.
    Verma NN, Dunn W, Adler RS et al (2006) All-arthroscopic versus mini-open rotator cuff repair: a retrospective review with minimum 2-year follow-up. Arthroscopy 22:587–594PubMedCrossRefGoogle Scholar
  4. 4.
    Nho SJ, Shindle MK, Sherman SL et al (2007) Systematic review of arthroscopic rotator cuff repair and mini-open rotator cuff repair. J Bone Joint Surg Am 89Suppl 3:127–136PubMedCrossRefGoogle Scholar
  5. 5.
    Nho SJ, Slabaugh MA, Seroyer ST et al (2009) Does the literature support double-row suture anchor fixation for arthroscopic rotator cuff repair? A systematic review comparing doublerow and single-row suture anchor configuration. Arthroscopy 25:1319–1328PubMedCrossRefGoogle Scholar
  6. 6.
    Reardon DJ, Maffulli N (2007) Clinical evidence shows no difference between single-and double-row repair for rotator cuff tears. Arthroscopy 23:670–673PubMedCrossRefGoogle Scholar
  7. 7.
    Wall LB, Keener JD, Brophy RH (2009) Clinical outcomes of double-row versus single-row rotator cuff repairs. Arthroscopy 25:1312–1318PubMedCrossRefGoogle Scholar
  8. 8.
    Wall LB, Keener JD, Brophy RH (2009) Double-row vs single-row rotator cuff repair: a review of the biomechanical evidence. J Shoulder Elbow Surg 18:933–941PubMedCrossRefGoogle Scholar
  9. 9.
    Jakobsen BW, Johannsen HV, Suder P et al (2007) Primary repair versus conservative treatment of first-time traumatic anterior dislocation of the shoulder: a randomized study with 10-year follow-up. Arthroscopy 23:118–123PubMedCrossRefGoogle Scholar
  10. 10.
    Hovelius L (1999) The natural history of primary anterior dislocation of the shoulder in the young. J Orthop Sci 4:307–317PubMedCrossRefGoogle Scholar
  11. 11.
    Brophy RH, Marx RG (2009) The treatment of traumatic anterior instability of the shoulder: nonoperative and surgical treatment. Arthroscopy 25:298–304PubMedCrossRefGoogle Scholar
  12. 12.
    Frost A, Zafar MS, Maffulli N (2009) Tenotomy versus tenodesis in the management of pathologic lesions of the tendon of the long head of the biceps brachii. Am J Sports Med 37:828–833PubMedCrossRefGoogle Scholar
  13. 13.
    Wolf RS, Zheng N, Weichel D (2005) Long head biceps tenotomy versus tenodesis: a cadaveric biomechanical analysis. Arthroscopy 21:182–185PubMedCrossRefGoogle Scholar
  14. 14.
    Ceccarelli E, Bondi R, Alviti F et al (2008) Treatment of acute grade III acromioclavicular dislocation: a lack of evidence. J Orthop Traumatol 9:105–108PubMedCrossRefGoogle Scholar
  15. 15.
    Simovitch R, Sanders B, Ozbaydar M et al (2009) Acromioclavicular joint injuries: diagnosis and management. J Am Acad Orthop Surg 17:207–219PubMedGoogle Scholar
  16. 16.
    Elhassan B, Ozbaydar M, Diller D et al (2009) Open versus arthroscopic acromioclavicular joint resection: a retrospective comparison study. Arthroscopy 25:1224–1232PubMedCrossRefGoogle Scholar
  17. 17.
    Millett PJ, Huffard BH, Horan MP et al (2009) Outcomes of full-thickness articular cartilage injuries of the shoulder treated with microfracture. Arthroscopy 25:856–863PubMedCrossRefGoogle Scholar
  18. 18.
    Jobe FW, Stark H, Lombardo SJ (1986) Reconstruction of the ulnar collateral ligament in athletes. J Bone Joint Surg Am 68:1158–1163PubMedGoogle Scholar
  19. 19.
    Lynch JR, Waitayawinyu T, Hanel DP et al (2008) Medial collateral ligament injury in the overhand-throwing athlete. J Hand Surg Am 33:430–437PubMedCrossRefGoogle Scholar
  20. 20.
    Leach RE, Miller JK (1987) Lateral and medial epicondylitis of the elbow. Clin Sports Med 6:259–272PubMedGoogle Scholar
  21. 21.
    Hsu JW, Gould JL, Fonseca-Sabune H et al (2009) The emerging role of elbow arthroscopy in chronic use injuries and fracture care. Hand Clin 25:305–321PubMedCrossRefGoogle Scholar
  22. 22.
    Chloros GD, Wiesler ER, Poehling GG (2008) Current concepts in wrist arthroscopy. Arthroscopy 24:343–354PubMedCrossRefGoogle Scholar
  23. 23.
    Ganz R, Leunig M, Leunig-Ganz K et al (2008) The etiology of osteoarthritis of the hip: an integrated mechanical concept. Clin Orthop Relat Res 466:264–272PubMedCrossRefGoogle Scholar
  24. 24.
    Ganz R, Parvizi J, Beck M et al (2003) Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res 112–120Google Scholar
  25. 25.
    McCarthy JC, Noble PC, Schuck MR et al (2001) The Otto E. Aufranc Award: The role of labral lesions to development of early degenerative hip disease. Clin Orthop Relat Res 25–37Google Scholar
  26. 26.
    Tanzer M, Noiseux N (2004) Osseous abnormalities and early osteoarthritis: the role of hip impingement. Clin Orthop Relat Res 170–177Google Scholar
  27. 27.
    Philippon MJ, Weiss DR, Kuppersmith DA et al (2010) Arthroscopic labral repair and treatment of femoroacetabular impingement in professional hockey players. Am J Sports Med 38:99–104PubMedCrossRefGoogle Scholar
  28. 28.
    Philippon MJ, Briggs KK, Yen YM et al (2009) Outcomes following hip arthroscopy for femoroacetabular impingement with associated chondrolabral dysfunction: minimum twoyear follow-up. J Bone Joint Surg Br 91:16–23PubMedCrossRefGoogle Scholar
  29. 29.
    Philippon MJ, Yen YM, Briggs KK et al (2008) Early outcomes after hip arthroscopy for femoroacetabular impingement in the athletic adolescent patient: a preliminary report. J Pediatr Orthop 28:705–710PubMedCrossRefGoogle Scholar
  30. 30.
    Lyman S, Koulouvaris P, Sherman S et al (2009) Epidemiology of anterior cruciate ligament reconstruction: trends, readmissions, and subsequent knee surgery. J Bone Joint Surg Am 91:2321–2328PubMedCrossRefGoogle Scholar
  31. 31.
    Krych AJ, Jackson JD, Hoskin TL et al (2008) A meta-analysis of patellar tendon autograft versus patellar tendon allograft in anterior cruciate ligament reconstruction. Arthroscopy 24:292–298PubMedCrossRefGoogle Scholar
  32. 32.
    Baer GS, Harner CD (2007) Clinical outcomes of allograft versus autograft in anterior cruciate ligament reconstruction. Clin Sports Med 26:661–681PubMedCrossRefGoogle Scholar
  33. 33.
    Carey JL, Dunn WR, Dahm DL et al (2009) A systematic review of anterior cruciate ligament reconstruction with autograft compared with allograft. J Bone Joint Surg Am 91:2242–2250PubMedCrossRefGoogle Scholar
  34. 34.
    Fu F, Christel P, Miller MD et al (2009) Graft selection for anterior cruciate ligament reconstruction. Instr Course Lect 58:337–354PubMedGoogle Scholar
  35. 35.
    Harner CD, Lo MY (2009) Future of allografts in sports medicine. Clin Sports Med 28:327–340, ixPubMedCrossRefGoogle Scholar
  36. 36.
    Colvin AC, Shen W, Musahl V et al (2009) Avoiding pitfalls in anatomic ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 17:956–963PubMedCrossRefGoogle Scholar
  37. 37.
    Zantop T, Wellmann M, Fu FH et al (2008) Tunnel positioning of anteromedial and posterolateral bundles in anatomic anterior cruciate ligament reconstruction: anatomic and radiographic findings. Am J Sports Med 36:65–72PubMedCrossRefGoogle Scholar
  38. 38.
    Kato Y, Ingham SJ, Kramer S et al (2010) Effect of tunnel position for anatomic single-bundle ACL reconstruction on knee biomechanics in a porcine model. Knee Surg Sports Traumatol Arthrosc 18:2–10PubMedCrossRefGoogle Scholar
  39. 39.
    Kopf S, Musahl V, Tashman S et al (2009) A systematic review of the femoral origin and tibial insertion morphology of the ACL. Knee Surg Sports Traumatol Arthrosc 17:213–219PubMedCrossRefGoogle Scholar
  40. 40.
    Fu FH, Kowalchuk D (2009) Cost analysis comparing single-bundle and double-bundle anterior cruciate ligament (ACL) reconstruction. Am J Sports Med 37:e1; author reply e2CrossRefGoogle Scholar
  41. 41.
    Tashman S, Kopf S, Fu FH (2008) The kinematic basis of ACL reconstruction. Oper Tech Sports Med 16:116–118PubMedCrossRefGoogle Scholar
  42. 42.
    van Eck CF, Romanowski JR, Fu FH (2009) Anatomic single-bundle anterior cruciate ligament reconstruction. Arthroscopy 25:943–946; author reply 946–947PubMedCrossRefGoogle Scholar
  43. 43.
    Irrgang JJ, Bost JE, Fu FH (2009) Re: Outcome of single-bundle versus double-bundle reconstruction of the anterior cruciate ligament: a meta-analysis. Am J Sports Med 37:421–422; author reply 422PubMedCrossRefGoogle Scholar
  44. 44.
    Kohen RB, Sekiya JK (2009) Single-bundle versus double-bundle posterior cruciate ligament reconstruction. Arthroscopy 25:1470–1477PubMedCrossRefGoogle Scholar
  45. 45.
    van Eck CF, Morse KR, Fu FH (2009) The anteromedial portal for anterior cruciate ligament reconstruction. Arthroscopy 25:1062–1064; author reply 1064–1065PubMedGoogle Scholar
  46. 46.
    Pombo MW, Shen W, Fu FH (2008) Anatomic double-bundle anterior cruciate ligament reconstruction: where are we today? Arthroscopy 24:1168–1177PubMedCrossRefGoogle Scholar
  47. 47.
    Alentorn-Geli E, Lajara F, Samitier G et al (2010) The transtibial versus the anteromedial portal technique in the arthroscopic bone-patellar tendon-bone anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 18:1013–1037PubMedCrossRefGoogle Scholar
  48. 48.
    Meredick RB, Vance KJ, Appleby D et al (2008) Outcome of single-bundle versus doublebundle reconstruction of the anterior cruciate ligament: a meta-analysis. Am J Sports Med 36:1414–1421PubMedCrossRefGoogle Scholar
  49. 49.
    Nebelung W, Wuschech H (2005) Thirty-five years of follow-up of anterior cruciate ligament-deficient knees in high-level athletes. Arthroscopy 21:696–702PubMedCrossRefGoogle Scholar
  50. 50.
    Fithian DC, Paxton LW, Goltz DH (2002) Fate of the anterior cruciate ligament-injured knee. Orthop Clin North Am 33:621–636PubMedCrossRefGoogle Scholar
  51. 51.
    Samuelsson K, Andersson D, Karlsson J (2009) Treatment of anterior cruciate ligament injuries with special reference to graft type and surgical technique: an assessment of randomized controlled trials. Arthroscopy 25:1139–1174PubMedCrossRefGoogle Scholar
  52. 52.
    Skyhar MJ, Warren RF, Ortiz GJ et al (1993) The effects of sectioning of the posterior cruciate ligament and the posterolateral complex on the articular contact pressures within the knee. J Bone Joint Surg Am 75:694–699PubMedGoogle Scholar
  53. 53.
    Harner CD, Vogrin TM, Hoher J et al (2000) Biomechanical analysis of a posterior cruciate ligament reconstruction. Deficiency of the posterolateral structures as a cause of graft failure. Am J Sports Med 28:32–39PubMedGoogle Scholar
  54. 54.
    MacGillivray JD, Stein BE, Park M et al (2006) Comparison of tibial inlay versus transtibial techniques for isolated posterior cruciate ligament reconstruction: minimum 2-year follow-up. Arthroscopy 22:320–328PubMedCrossRefGoogle Scholar
  55. 55.
    Seon JK, Song EK (2006) Reconstruction of isolated posterior cruciate ligament injuries: a clinical comparison of the transtibial and tibial inlay techniques. Arthroscopy 22:27–32PubMedCrossRefGoogle Scholar
  56. 56.
    Ranawat A, Baker CL, 3rd, Henry S et al (2008) Posterolateral corner injury of the knee: evaluation and management. J Am Acad Orthop Surg 16:506–518PubMedGoogle Scholar
  57. 57.
    LaPrade RF, Resig S, Wentorf F et al (1999) The effects of grade III posterolateral knee complex injuries on anterior cruciate ligament graft force. A biomechanical analysis. Am J Sports Med 27:469–475PubMedGoogle Scholar
  58. 58.
    Swenson TM, Harner CD (1995) Knee ligament and meniscal injuries. Current concepts. Orthop Clin North Am 26:529–546Google Scholar
  59. 59.
    Frank C, Amiel D, Akeson WH (1983) Healing of the medial collateral ligament of the knee. A morphological and biochemical assessment in rabbits. Acta Orthop Scand 54:917–923PubMedCrossRefGoogle Scholar
  60. 60.
    Frank C, Woo SL, Amiel D et al (1983) Medial collateral ligament healing. A multidisciplinary assessment in rabbits. Am J Sports Med 11:379–389PubMedCrossRefGoogle Scholar
  61. 61.
    Lundberg M, Messner K (1996) Long-term prognosis of isolated partial medial collateral ligament ruptures. A ten-year clinical and radiographic evaluation of a prospectively observed group of patients. Am J Sports Med 24:160–163PubMedCrossRefGoogle Scholar
  62. 62.
    Arnoczky SP, Warren RF, Spivak JM (1988) Meniscal repair using an exogenous fibrin clot. An experimental study in dogs. J Bone Joint Surg Am 70:1209–1217PubMedGoogle Scholar
  63. 63.
    Rodeo SA (2000) Arthroscopic meniscal repair with use of the outside-in technique. Instr Course Lect 49:195–206PubMedGoogle Scholar
  64. 64.
    McAndrews PT, Arnoczky SP (1996) Meniscal repair enhancement techniques. Clin Sports Med 15:499–510PubMedGoogle Scholar
  65. 65.
    Ishida K, Kuroda R, Miwa M et al (2007) The regenerative effects of platelet-rich plasma on meniscal cells in vitro and its in vivo application with biodegradable gelatin hydrogel. Tissue Eng 13:1103–1112PubMedCrossRefGoogle Scholar
  66. 66.
    Tumia NS, Johnstone AJ (2009) Platelet derived growth factor-AB enhances knee meniscal cell activity in vitro. Knee 16:73–76PubMedCrossRefGoogle Scholar
  67. 67.
    Harner CD, Mauro CS, Lesniak BP et al (2009) Biomechanical consequences of a tear of the posterior root of the medial meniscus. Surgical technique. J Bone Joint Surg Am 91Suppl 2:257–270PubMedCrossRefGoogle Scholar
  68. 68.
    Allaire R, Muriuki M, Gilbertson L et al (2008) Biomechanical consequences of a tear of the posterior root of the medial meniscus. Similar to total meniscectomy. J Bone Joint Surg Am 90:1922–1931PubMedCrossRefGoogle Scholar
  69. 69.
    Sekiya JK, West RV, Groff YJ et al (2006) Clinical outcomes following isolated lateral meniscal allograft transplantation. Arthroscopy 22:771–780PubMedCrossRefGoogle Scholar
  70. 70.
    Colvin AC, West RV (2008) Patellar instability. J Bone Joint Surg Am 90:2751–2762PubMedCrossRefGoogle Scholar
  71. 71.
    Glazebrook MA, Ganapathy V, Bridge MA et al (2009) Evidence-based indications for ankle arthroscopy. Arthroscopy 25:1478–1490PubMedCrossRefGoogle Scholar
  72. 72.
    Giannini S, Battaglia M, Buda R et al (2009) Surgical treatment of osteochondral lesions of the talus by open-field autologous chondrocyte implantation: a 10-year follow-up clinical and magnetic resonance imaging T2-mapping evaluation. Am J Sports Med 37Suppl 1:112S–118SPubMedCrossRefGoogle Scholar
  73. 73.
    Lee KB, Bai LB, Yoon TR et al (2009) Second-look arthroscopic findings and clinical outcomes after microfracture for osteochondral lesions of the talus. Am J Sports Med 37Suppl 1:63S–70SPubMedCrossRefGoogle Scholar
  74. 74.
    Lee KB, Bai LB, Chung JY et al (2010) Arthroscopic microfracture for osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc 18:247–253PubMedCrossRefGoogle Scholar
  75. 75.
    Theye F, Mueller KA (2004) “Heads up”: concussions in high school sports. Clin Med Res 2:165–171PubMedCrossRefGoogle Scholar
  76. 76.
    Lovell M (2009) The management of sports-related concussion: current status and future trends. Clin Sports Med 28:95–111PubMedCrossRefGoogle Scholar
  77. 77.
    Schatz P, Pardini JE, Lovell MR et al (2006) Sensitivity and specificity of the ImPACT Test Battery for concussion in athletes. Arch Clin Neuropsychol 21:91–99PubMedCrossRefGoogle Scholar
  78. 78.
    Iverson GL, Lovell MR, Collins MW (2005) Validity of ImPACT for measuring processing speed following sports-related concussion. J Clin Exp Neuropsychol 27:683–689PubMedCrossRefGoogle Scholar
  79. 79.
    Tan H, Chu CR, Payne KA et al (2009) Injectable in situ forming biodegradable chitosanhyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30:2499–2506PubMedCrossRefGoogle Scholar
  80. 80.
    Bear DM, Williams A, Chu CT et al (2009) Optical coherence tomography grading correlates with MRI T2 mapping and extracellular matrix content. J Orthop ResGoogle Scholar
  81. 81.
    Chu CR, Izzo NJ, Irrgang JJ et al (2007) Clinical diagnosis of potentially treatable early articular cartilage degeneration using optical coherence tomography. J Biomed Opt 12:051703PubMedCrossRefGoogle Scholar
  82. 82.
    Chu CR, Lin D, Geisler JL et al (2004) Arthroscopic microscopy of articular cartilage using optical coherence tomography. Am J Sports Med 32:699–709PubMedCrossRefGoogle Scholar
  83. 83.
    Bedair HS, Karthikeyan T, Quintero A et al (2008) Angiotensin II receptor blockade administered after injury improves muscle regeneration and decreases fibrosis in normal skeletal muscle. Am J Sports Med 36:1548–1554PubMedCrossRefGoogle Scholar
  84. 84.
    Zhu J, Li Y, Shen W et al (2007) Relationships between transforming growth factor-beta1, myostatin, and decorin: implications for skeletal muscle fibrosis. J Biol Chem 282:25852–25863PubMedCrossRefGoogle Scholar
  85. 85.
    Sato K, Li Y, Foster W et al (2003) Improvement of muscle healing through enhancement of muscle regeneration and prevention of fibrosis. Muscle Nerve 28:365–372PubMedCrossRefGoogle Scholar
  86. 86.
    Negishi S, Li Y, Usas A et al (2005) The effect of relaxin treatment on skeletal muscle injuries. Am J Sports Med 33:1816–1824PubMedCrossRefGoogle Scholar
  87. 87.
    Li Y, Negishi S, Sakamoto M et al (2005) The use of relaxin improves healing in injured muscle. Ann N Y Acad Sci 1041:395–397PubMedCrossRefGoogle Scholar
  88. 88.
    Fukushima K, Badlani N, Usas A et al (2001) The use of an antifibrosis agent to improve muscle recovery after laceration. Am J Sports Med 29:394–402PubMedGoogle Scholar
  89. 89.
    Sell TC, Ferris CM, Abt JP et al (2006) The effect of direction and reaction on the neuromuscular and biomechanical characteristics of the knee during tasks that simulate the noncontact anterior cruciate ligament injury mechanism. Am J Sports Med 34:43–54PubMedCrossRefGoogle Scholar
  90. 90.
    Myers J, Lephart S, Tsai YS et al (2008) The role of upper torso and pelvis rotation in driving performance during the golf swing. J Sports Sci 26:181–188PubMedCrossRefGoogle Scholar
  91. 91.
    Lephart SM, Smoliga JM, Myers JB et al (2007) An eight-week golf-specific exercise program improves physical characteristics, swing mechanics, and golf performance in recreational golfers. J Strength Cond Res 21:860–869PubMedGoogle Scholar
  92. 92.
    Abt JP, Smoliga JM, Brick MJ et al (2007) Relationship between cycling mechanics and core stability. J Strength Cond Res 21:1300–1304PubMedGoogle Scholar
  93. 93.
    Myers JB, Oyama S, Wassinger CA et al (2007) Reliability, precision, accuracy, and validity of posterior shoulder tightness assessment in overhead athletes. Am J Sports Med 35:1922–1930PubMedCrossRefGoogle Scholar
  94. 94.
    Lephart SM, Ferris CM, Fu FH (2002) Risk factors associated with noncontact anterior cruciate ligament injuries in female athletes. Instr Course Lect 51:307–310PubMedGoogle Scholar
  95. 95.
    Lephart SM, Abt JP, Ferris CM (2002) Neuromuscular contributions to anterior cruciate ligament injuries in females. Curr Opin Rheumatol 14:168–173PubMedCrossRefGoogle Scholar
  96. 96.
    Hall MP, Band PA, Meislin RJ et al (2009) Platelet-rich plasma: current concepts and application in sports medicine. J Am Acad Orthop Surg 17:602–608PubMedGoogle Scholar
  97. 97.
    Alsousou J, Thompson M, Hulley P et al (2009) The biology of platelet-rich plasma and its application in trauma and orthopaedic surgery: a review of the literature. J Bone Joint Surg Br 91:987–996PubMedCrossRefGoogle Scholar
  98. 98.
    de Vos RJ, Weir A, van Schie HT et al (2010) Platelet-rich plasma injection for chronic Achilles tendinopathy: a randomized controlled trial. JAMA 303:144–149PubMedCrossRefGoogle Scholar
  99. 99.
    Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228PubMedCrossRefGoogle Scholar
  100. 100.
    Nakahara H, Goldberg VM, Caplan AI (1992) Culture-expanded periosteal-derived cells exhibit osteochondrogenic potential in porous calcium phosphate ceramics in vivo. Clin Orthop Relat Res 291–298Google Scholar
  101. 101.
    De Bari C, Dell’Accio F, Tylzanowski P et al (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44:1928–1942PubMedCrossRefGoogle Scholar
  102. 102.
    Diefenderfer DL, Brighton CT (2000) Microvascular pericytes express aggrecan message which is regulated by BMP-2. Biochem Biophys Res Commun 269:172–178PubMedCrossRefGoogle Scholar
  103. 103.
    Zvaifler NJ, Marinova-Mutafchieva L, Adams G et al (2000) Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res 2:477–488PubMedCrossRefGoogle Scholar
  104. 104.
    Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  105. 105.
    Qu-Petersen Z, Deasy B, Jankowski R et al (2002) Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 157:851–864PubMedCrossRefGoogle Scholar
  106. 106.
    Gussoni E, Soneoka Y, Strickland CD et al (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394PubMedGoogle Scholar
  107. 107.
    Bey MJ, Kline SK, Tashman S et al (2008) Accuracy of biplane x-ray imaging combined with model-based tracking for measuring in-vivo patellofemoral joint motion. J Orthop Surg Res 3:38PubMedCrossRefGoogle Scholar
  108. 108.
    Anderst WJ, Tashman S (2009) The association between velocity of the center of closest proximity on subchondral bones and osteoarthritis progression. J Orthop Res 27:71–77PubMedCrossRefGoogle Scholar
  109. 109.
    Anderst W, Zauel R, Bishop J et al (2009) Validation of three-dimensional model-based tibiofemoral tracking during running. Med Eng Phys 31:10–16PubMedCrossRefGoogle Scholar
  110. 110.
    Tashman S, Collon D, Anderson K et al (2004) Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32:975–983PubMedCrossRefGoogle Scholar
  111. 111.
    Bey MJ, Zauel R, Brock SK et al (2006) Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics. J Biomech Eng 128:604–609PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2011

Authors and Affiliations

  • K. D. Illingworth
  • S. M. Vyas
  • V. Musahl
  • F. H. Fu

There are no affiliations available

Personalised recommendations