Skip to main content

Gene Therapy

  • Chapter
Biotechnology in Surgery

Part of the book series: Updates in Surgery ((UPDATESSURG,volume 0))

  • 785 Accesses

Abstract

Technological developments in gene isolation and DNA sequencing have been important factors contributing to the knowledge of the genes associated with numerous diseases. This information has been critical for enhancing our understanding of the genetic basis of disease and the role that specific genes play in human phys

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nathwani AC, Benjamin R, Nienhuis AW, Davidoff AM (2004) Current status and prospects for gene therapy. Vox Sanguinis 87:73–81

    Article  CAS  PubMed  Google Scholar 

  2. Sangiuolo F, Scaldaferri ML, Filareto A et al (2008) Cftr gene targeting in mouse embryonic stem cells mediated by small fragment homologous replacement (SFHR). Front Biosci 1:2989–2999

    Article  Google Scholar 

  3. Macnab S, Whitehouse A (2009) Progress and prospects: human artificial chromosomes. Gene Ther 16:1180–1188

    Article  CAS  PubMed  Google Scholar 

  4. De Coppi P, Bartsch G Jr, Siddiqui MM et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106

    Article  PubMed  Google Scholar 

  5. Spitalieri P, Cortese G, Pietropolli A et al (2009) Identification of multipotent cytotrophoblast cells from human first trimester chorionic villi. Cloning Stem Cells 11:535–556

    Article  CAS  PubMed  Google Scholar 

  6. Nakayama M (2010) Homologous recombination in human iPS and ES cells for use in gene correction therapy. Drug Discov Today 15:198–202

    Article  CAS  PubMed  Google Scholar 

  7. Eisenstein M (2010) IPSCs: one cell to rule them all? Nature methods 7:81–85

    Article  CAS  Google Scholar 

  8. Rao M, Condic ML (2008) Alternative sources of pluripotent stem cells: scientific solutions to an ethical dilemma. Stem Cells Dev 17:1–10

    Article  PubMed  Google Scholar 

  9. Aiuti A, Slavin S, Aker M et al (2002) Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296:2410–2413

    Article  CAS  PubMed  Google Scholar 

  10. Gaspar HB, Parsley KL, Howe S et al (2004) Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 364:2181–2187

    Article  CAS  PubMed  Google Scholar 

  11. Hacein-Bey-Abina S, Le Deist F, Carlier F et al (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346:1185–1193

    Article  CAS  PubMed  Google Scholar 

  12. Thrasher A (2007) Severe adverse event in clinical trial of gene therapy for X-SCID. http://www.esgct.org/upload/X-SCID_statement_AT.pdf

    Google Scholar 

  13. Kohn DB, Sadelain M, Glorioso JC (2003) Occurrence of leukaemia following gene therapy of X-linked SCID. Nat Rev Cancer 3:477–488

    Article  CAS  PubMed  Google Scholar 

  14. Aiuti A, Cattaneo F, Galimberti S et al (2009) Gene therapy for immunodeficiency due to adenosine deaminase deficiency. N Engl J Med 360:447–458

    Article  CAS  PubMed  Google Scholar 

  15. Bainbridge JW, Smith AJ, Barker SS et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358:2231–2239

    Article  CAS  PubMed  Google Scholar 

  16. van Deutekom JC, van Ommen GJ (2003) Advances in Duchenne muscular dystrophy gene therapy. Nat Rev Genet 4:774–783. Review

    Article  PubMed  Google Scholar 

  17. Cho DH, Tapscott SJ (2007) Myotonic dystrophy: emerging mechanisms for DM1 and DM2. Biochim Biophys Acta 1772:195–204

    CAS  PubMed  Google Scholar 

  18. Takeshima Y, Nishio H, Sakamoto H et al (1995) Modulation of in vitro splicing of the upstream intron by modifying an intra-exon sequence which is deleted from the dystrophin gene in dystrophin Kobe. J Clin Invest 95:515–520

    Article  CAS  PubMed  Google Scholar 

  19. Wu B, Moulton HM, Iversen PL et al (2008) Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer. Proc Natl Acad Sci USA 105:14814–14819

    Article  CAS  PubMed  Google Scholar 

  20. Gruenert DC, Bruscia E, Novelli G et al (2003) Sequence specific modification of genomic DNA by small DNA fragments. J Clin Invest 112:637–641

    CAS  PubMed  Google Scholar 

  21. Kapsa R, Quigley A, Lynch GS et al (2001) In vivo and in vitro correction of the mdx dystrophin gene nonsense mutation by short-fragment homologous replacement. Hum Gene Ther 12:629–642

    Article  CAS  PubMed  Google Scholar 

  22. Hoshiya H, Kazuki Y, Abe S et al (2009) A highly stable and nonintegrated human artificial chromosome (HAC) containing the 2.4 Mb entire human dystrophin gene. Molecular Therapy 17:309–317

    Article  CAS  PubMed  Google Scholar 

  23. Sangiuolo F, Filareto A, Spitalieri P (2005) In vitro restoration of functional SMN protein in human trophoblast cells affected by spinal muscular atrophy by small fragment homologous replacement. Hum Gene Ther 16:869–880

    Article  CAS  PubMed  Google Scholar 

  24. Monani UR, Sendtner M, Coovert DD et al (2000) The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(−/−) mice and results in a mouse with spinal muscular atrophy. Human Molecular Genetics 9:333–339

    Article  CAS  PubMed  Google Scholar 

  25. Azzouz M, Le T, Ralph GS et al (2004) Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy. J Clin Invest 114:1726–1731

    CAS  PubMed  Google Scholar 

  26. Foust KD, Wang X, McGovern VL (2010) Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol 28:271–274

    Article  CAS  PubMed  Google Scholar 

  27. Passini MA, Bu J, Roskelley EM et al (2010) CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy. J Clin Invest 120:1253–1264

    Article  CAS  PubMed  Google Scholar 

  28. Acsadi G, Anguelov RA, Yang H et al (2002) Increased survival and function of SOD1 mice after glial cell-derived neurotrophic factor gene therapy. Hum Gene Ther 13:1047–1059

    Article  CAS  PubMed  Google Scholar 

  29. Wang LJ, Lu YY, Muramatsu S et al (2002) Neuroprotective effects of glial cell line-derived neurotrophic factor mediated by an adeno-associated virus vector in a transgenic animal model of amyotrophic lateral sclerosis. J Neurosci 22:6920–6928

    CAS  PubMed  Google Scholar 

  30. Azzouz M, Ralph GS, Storkebaum E et al (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429:413–417

    Article  CAS  PubMed  Google Scholar 

  31. Kaspar BK, Lladó J, Sherkat N et al (2003) Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 301:839–842

    Article  CAS  PubMed  Google Scholar 

  32. Hsich G, Sena-Esteves M, Breakefield XO (2002) Critical issues in gene therapy for neurologic disease. Hum Gene Ther 13:579–604

    Article  CAS  PubMed  Google Scholar 

  33. Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419

    Article  CAS  PubMed  Google Scholar 

  34. Montini E, Cesana D, Schmidt M et al (2006) Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 24:687–696

    Article  CAS  PubMed  Google Scholar 

  35. Storkebaum E, Lambrechts D, Dewerchin M et al (2005) Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 8:85–92

    Article  CAS  PubMed  Google Scholar 

  36. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  37. Gao J, Coggeshall RE, Tarasenko YI, Wu P (2005) Human neural stem cell-derived cholinergic neurons innervate muscle in motoneuron deficient adult rats. Neuroscience 131:257–262

    Article  CAS  PubMed  Google Scholar 

  38. Xu L, Yan J, Chen D et al (2006) Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats. Transplantation 82:865–875

    Article  PubMed  Google Scholar 

  39. Wichterle H, Lieberam I, Porter JA, Jessell TM (2002) Directed differentiation of embryonic stem cells into motor neurons. Cell 110:385–397

    Article  CAS  PubMed  Google Scholar 

  40. Harper JM, Krishnan C, Darman JS et al (2004) Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats. Proc Natl Acad Sci USA 101:7123–7128

    Article  CAS  PubMed  Google Scholar 

  41. Corti S, Locatelli F, Papadimitriou D et al (2006) Transplanted ALDHhiSSClo neural stem cells generate motor neurons and delay disease progression of nmd mice, an animal model of SMARD1. Hum Mol Genet 15:167–187

    Article  CAS  PubMed  Google Scholar 

  42. Corti S, Locatelli F, Papadimitriou D et al (2007) Neural stem cells LewisX+ CXCR4+ modify disease progression in an amyotrophic lateral sclerosis model. Brain 130:1289–1305

    Article  PubMed  Google Scholar 

  43. Corti S, Nizzardo M, Nardini M (2008) Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy. J Clin Invest 118:3316–3330

    Article  CAS  PubMed  Google Scholar 

  44. Dimos JT, Rodolfa KT, Niakan KK et al (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321:1218–1221

    Article  CAS  PubMed  Google Scholar 

  45. Ebert AD, Yu J, Rose FF et al (2008) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457:277–280

    Article  PubMed  Google Scholar 

  46. Wang KC, Helms JA, Chang HY (2009) Regeneration, repair and remembering identity: the three Rs of Hox gene expression. Trends Cell Biol 19:268–275

    Article  CAS  PubMed  Google Scholar 

  47. Ghosh AK, Varga J (2007) The transcriptional coactivator and acetyltransferase p300 in fibroblast biology and fibrosis. J Cell Physiol 213:663–671

    Article  CAS  PubMed  Google Scholar 

  48. Zentilin L, Puligadda U, Lionetti V et al (2009) Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J 24:1467–1478

    Article  PubMed  Google Scholar 

  49. Mulder G, Tallis AJ, Marshall VT et al (2009) Treatment of nonhealing diabetic foot ulcers with a platelet-derived growth factor gene-activated matrix (GAM501): results of a phase 1/2 trial. Wound Repair Regen 17:772–779

    Article  PubMed  Google Scholar 

  50. Anitua E, Sánchez M, Orive G et al (2008) Delivering growth factors for therapeutics. Trends Pharmacol Sci 29:37–41

    Article  CAS  PubMed  Google Scholar 

  51. Tafuro S, Ayuso E, Zacchigna S et al (2009) Inducible adeno-associated virus vectors promote functional angiogenesis in adult organisms via regulated vascular endothelial growth factor expression. Cardiovasc Res 83:663–671

    Article  CAS  PubMed  Google Scholar 

  52. Voigt K, Izsvák Z, Ivics Z (2008) Targeted gene insertion for molecular medicine. J Mol Med 86:1205–1219

    Article  CAS  PubMed  Google Scholar 

  53. Tolmachov O (2009) Designing plasmid vectors. Methods Mol Biol 542:117–129

    Article  CAS  PubMed  Google Scholar 

  54. Smith RH (2008) Adeno-associated virus integration: virus versus vector. Gene Ther 15:817–822

    Article  CAS  PubMed  Google Scholar 

  55. Rippe B, Rosengren BI, Carlsson O et al (2002) Transendothelial transport: the vesicle controversy. J Vasc Res 39:375–390

    Article  CAS  PubMed  Google Scholar 

  56. Kulkarni M, Greiser U, O’Brien T et al (2010) Liposomal gene delivery mediated by tissueengineered scaffolds. Trends Biotechnol 28:28–36

    Article  CAS  PubMed  Google Scholar 

  57. Giacca M (2007) Virus-mediated gene transfer to induce therapeutic angiogenesis: where do we stand? Int J Nanomedicine 2:527–540

    CAS  PubMed  Google Scholar 

  58. Ritter T, Lehmann M, Volk HD (2002) Improvements in gene therapy: averting the immune response to adenoviral vectors. Bio Drugs 16:3–10

    CAS  Google Scholar 

  59. Zentilin L, Giacca M (2008) Adeno-associated virus vectors: versatile tools for in vivo gene transfer. Contrib Nephrol 159:63–77

    Article  CAS  PubMed  Google Scholar 

  60. Pluta K, Kacprzak MM (2009) Use of HIV as a gene transfer vector. Acta Biochim Pol 56:531–595

    CAS  PubMed  Google Scholar 

  61. D’Costa J, Mansfield SG, Humeau LM (2009) Lentiviral vectors in clinical trials: Current status. Curr Opin Mol Ther 11:554–564

    PubMed  Google Scholar 

  62. Mok H, Park JW, Park TG (2007) Micro-encapsulation of PEGylated adenovirus within PLGA microspheres for enhanced stability and gene transfection efficiency. Pharm Res 24:2263–2269

    Article  CAS  PubMed  Google Scholar 

  63. Enestvedt CK, Hosack L, Winn SR et al (2008) VEGF gene therapy augments localized angiogenesis and promotes anastomotic wound healing: a pilot study in a clinically relevant animal model. J Gastrointest Surg 12:1762–1770

    Article  PubMed  Google Scholar 

  64. Trentin D, Hall H, Wechsler S et al (2006) Peptide-matrix-mediated gene transfer of an oxygen-insensitive hypoxia-inducible factor-1alpha variant for local induction of angiogenesis. Proc Natl Acad Sci USA 103:2506–2511

    Article  CAS  PubMed  Google Scholar 

  65. Cardoso AL, Simões S, de Almeida LP et al (2008) Tf-lipoplexes for neuronal siRNA delivery: a promising system to mediate gene silencing in the CNS. J Control Release 132:113–123

    Article  CAS  PubMed  Google Scholar 

  66. Mi J, Zhang X, Giangrande PH et al (2005) Targeted inhibition of alphavbeta3 integrin with an RNA aptamer impairs endothelial cell growth and survival. Biochem Biophys Res Commun 338:956–963

    Article  CAS  PubMed  Google Scholar 

  67. Heyde M, Partridge KA, Oreffo RO et al (2007) Gene therapy used for tissue engineering applications. J Pharm Pharmacol 59:329–350

    Article  CAS  PubMed  Google Scholar 

  68. Berry CC, Shelton JC, Lee DA (2009) Cell-generated forces influence the viability, metabolism and mechanical properties of fibroblast-seeded collagen gel constructs. J Tissue Eng Regen Med 3:43–53

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Italia

About this chapter

Cite this chapter

Malgieri, A., Spitalieri, P., Novelli, G., Sangiuolo, F.C. (2011). Gene Therapy. In: Barbarisi, A. (eds) Biotechnology in Surgery. Updates in Surgery, vol 0. Springer, Milano. https://doi.org/10.1007/978-88-470-1658-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1658-3_8

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1657-6

  • Online ISBN: 978-88-470-1658-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics