Advertisement

Regenerative Medicine: Current and Potential Applications

  • Alfonso Barbarisi
  • Francesco Rosso
Part of the Updates in Surgery book series (UPDATESSURG, volume 0)

Abstract

There is a substantial unmet demand for tissues to repair injured, degenerated or congenitally defected tissues. The field of tissue engineering has emerged to fill the void where neither native physiology nor purely artificial implantable materials can sufficiently replace or repair these damaged tissues. While tissues such as bone or skin can effectively repair a small injury given sufficient time, many tissues such as myocardium and cartilage do not regenerate properly without interv

Keywords

Human Embryonic Stem Cell Bioartificial Liver Unrestricted Somatic Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abatangelo G, Brun P, Radice M et al (2001) Tissue engineering. In: Barbucci R (ed) Integrated biomaterials science. New York, Kluwer Academic pp 885–945Google Scholar
  2. 2.
    Vaino S, Muller U (1997) Inductive tissue interactions, cell signaling, and the control of kidney organogenesis. Cell 90:975–978CrossRefGoogle Scholar
  3. 3.
    Putnam AJ, Mooney DJ (1996) Tissue engineering using synthetic extracellular matrices. Nat Med 2:824–826CrossRefPubMedGoogle Scholar
  4. 4.
    Kim BS, Mooney DJ (1998) Engineering smooth muscle tissue with a predefined structure. J Biomed Mater Res 41:322–332CrossRefPubMedGoogle Scholar
  5. 5.
    Park KH, Bae YH (2002) Phenotype of hepatocyte spheroids in Arg-GLY-Asp (RGD) containing a thermo-reversible extracellular matrix. Biosci Biotechnol Biochem 66:1473–1478CrossRefPubMedGoogle Scholar
  6. 6.
    Tian B, Lessan K, Kahm J et al (2002) Beta 1 integrin regulates fibroblast viability during collagen matrix contraction through a phosphatidylinositol 3-kinase/Akt/protein kinase B signalling pathway. J Biol Chem 277:24667–24675CrossRefPubMedGoogle Scholar
  7. 7.
    Rosso F, Marino G, Giordano A et al (2005) Smart materials as scaffolds for tissue engineering. J Cell Physiol 203:465–470CrossRefPubMedGoogle Scholar
  8. 8.
    Halstenberg S, Panitch A, Rizzi S et al (2002) Biologically engineered protein-graft poly(ethylene glycol)hydrogels: a cell plasmindegradable biosynthetic material for tissue repair. Biomacromolecules 3:710–723CrossRefPubMedGoogle Scholar
  9. 9.
    Lutolf MP, Weber FE, Schmoekel HG et al (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21:513–518CrossRefPubMedGoogle Scholar
  10. 10.
    Rao RR, Calhoun JD, Qin X et al (2004) Comparative transcriptional profiling of two human embryonic stem cell lines. Biotechnol Bioeng 88:273–286CrossRefPubMedGoogle Scholar
  11. 11.
    Cowan CA, Klimanskaya I, McMahon J et al (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350:1353–1356CrossRefPubMedGoogle Scholar
  12. 12.
    Vrana KE, Hipp JD, Goss AM et al (2003) Nonhuman primate parthenogenetic stem cells. Proc Natl Acad Sci U S A 100[Suppl 1]:11911–11916CrossRefPubMedGoogle Scholar
  13. 13.
    Lawrenz B, Schiller H, Willbold E et al (2004) Highly sensitive biosafety model for stem-cellderived grafts. Cytotherapy 6:212–222CrossRefPubMedGoogle Scholar
  14. 14.
    Schuldiner M, Itskovitz-Eldor J, Benvenisty N (2003) Selective ablation of human embryonic stem cells expressing a “suicide” gene. Stem Cells 21:257–265CrossRefPubMedGoogle Scholar
  15. 15.
    Lysaght MJ (2003) Immunosuppression, immunoisolation and celltherapy. Mol Ther 7:432CrossRefPubMedGoogle Scholar
  16. 16.
    Drukker M, Katz G, Urbach A et al (2002) Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci U S A 99:9864–9869CrossRefPubMedGoogle Scholar
  17. 17.
    Colman A, Kind A (2000) Therapeutic cloning: concepts and practicalities. Trends Biotechnol 18:192–196CrossRefPubMedGoogle Scholar
  18. 18.
    Lanza RP, Chung HY, Yoo JJ et al (2002) Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol 20:689–696CrossRefPubMedGoogle Scholar
  19. 19.
    Stojkovic P, Lako M, Stewart R et al (2005) An autogeneic feeder cell system that efficiently supports growth of undifferentiated human embryonic stem cells. Stem Cells 23:306–314CrossRefPubMedGoogle Scholar
  20. 20.
    Stacey GN, Cobo F, Nieto A et al (2006) The development of “feeder” cells for the preparation of clinical grade hES cell lines: challenges and solutions. J Biotechnol 125:583–588CrossRefPubMedGoogle Scholar
  21. 21.
    Cheon S H, Kim S J, Jo JY et al (2006) Defined feeder-free culture system of human embryonic stem cells. Biol Reprod 74:611Google Scholar
  22. 22.
    Wang G, Zhang H, Zhao Y et al (2005) Noggin and bFGF cooperate to maintain the pluripotency of human embryonic stem cells in the absence of feeder layers. Biochem Biophys Res Commun 330:934–942CrossRefPubMedGoogle Scholar
  23. 23.
    Itskovitz-Eldor J, Schuldiner M, Karsenti D et al (2000) Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med 6:88–95PubMedGoogle Scholar
  24. 24.
    Gerecht-Nir S, Cohen S, Itskovitz-Eldor J (2004) Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnol Bioeng 86:493–502CrossRefPubMedGoogle Scholar
  25. 25.
    Passier R, Denning C, Mummery C (2006) Cardiomyocytes from human embryonic stem cells. Handb Exp Pharmacol 174:101–122CrossRefPubMedGoogle Scholar
  26. 26.
    Priddle H, Jones DR, Burridge PW, Patient R (2006) Hematopoiesis from human embryonic stem cells: overcoming the immune barrier in stem cell therapies. Stem Cells 24:815–824CrossRefPubMedGoogle Scholar
  27. 27.
    Tian X, Kaufman DS (2005) Hematopoietic development of human embryonic stem cells in culture. Methods Mol Med 105:425–436PubMedGoogle Scholar
  28. 28.
    Sanchez-Pernaute R, Studer L, Ferrari D et al (2005) Long-term survival of dopamine neurons derived from parthenogenetic primate embryonic stem cells (cyno-1) after transplantation. Stem Cells 23:914–922CrossRefPubMedGoogle Scholar
  29. 29.
    Caspi O, Gepstein L (2006) Regenerating the heart using human embryonic stem cells-from cell to bedside. Isr Med Assoc J 8:208–214PubMedGoogle Scholar
  30. 30.
    Passier R, Denning C, Mummery C (2006) Cardiomyocytes from human embryonic stem cells. Handb Exp Pharmacol 174:101–122CrossRefPubMedGoogle Scholar
  31. 31.
    Gao J, Caplan AI (2003) Mesenchymal stem cells and tissue engineering for orthopaedic surgery. Chir Organi Mov 88:305–316PubMedGoogle Scholar
  32. 32.
    Raghunath J, Salacinski HJ, Sales KM et al (2005) Advancing cartilage tissue engineering: the application of stem cell technology. Curr Opin Biotechnol 16:503–509CrossRefPubMedGoogle Scholar
  33. 33.
    Gimble J, Guilak F (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5:362–369CrossRefPubMedGoogle Scholar
  34. 34.
    Marino G, Rosso F, Cafiero G et al (2010) b-Tricalcium phosphate 3D scaffold promote alone osteogenic differentiation of human adipose stem cells: in vitro study. J Mater Sci Mater Med 21:353–363CrossRefPubMedGoogle Scholar
  35. 35.
    De Coppi P, Bartsch G, Siddiqui MM et al (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106CrossRefPubMedGoogle Scholar
  36. 36.
    Miki T, Lehmann T, Cai H et al (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23:1549–1559CrossRefPubMedGoogle Scholar
  37. 37.
    Kogler G, Sensken S, Airey JA et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200:123–135CrossRefPubMedGoogle Scholar
  38. 38.
    Fandrich F, Dresske B, Bader M, Schulze M (2002) Embryonic stem cells share immune-privileged features relevant for tolerance induction. J Mol Med 80:343–350CrossRefPubMedGoogle Scholar
  39. 39.
    Fandrich F, Lin X, Chai GX et al (2002) Preimplantation-stage stem cells induce long-term allogeneic graft acceptance without supplementary host conditioning. Nat Med 8:171–178CrossRefPubMedGoogle Scholar
  40. 40.
    Drukker M, Katchman H, Katz G et al (2006) Human embryonic stem cells and their differentiated derivatives are less susceptible to immune rejection than adult cells. Stem Cells 24:221–229CrossRefPubMedGoogle Scholar
  41. 41.
    Arinzeh T L, Peter SJ, Archambault MP et al (2003) Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am 85-A:1927–1935Google Scholar
  42. 42.
    Krampera M, Cosmi L, Angeli R et al (2006) Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24:386–398CrossRefPubMedGoogle Scholar
  43. 43.
    Krampera M, Pasini A, Pizzolo G et al (2006) Regenerative and immunomodulatory potential of mesenchymal stem cells. Curr Opin Pharmacol 6:435–441CrossRefPubMedGoogle Scholar
  44. 44.
    Saini S, Wick TM (2004) Effect of low oxygen tension on tissue engineered cartilage construct development in the concentric cylinder bioreactor. Tissue Eng 10:825–832CrossRefPubMedGoogle Scholar
  45. 45.
    Matouskova E, Broz L, Sotlbova V et al (2006) Human allogeneic keratinocytes cultured on acellular xenodermis: the use in healing of burns and other skin defects. Biomed Mater Eng 16[Suppl 4]:S63–S71PubMedGoogle Scholar
  46. 46.
    Brychta P, Adler J, Rihova H et al (2002) Cultured epidermal allografts: quantitative evaluation of their healing effect in deep dermal burns. Cell Tissue Bank 3:15–23CrossRefPubMedGoogle Scholar
  47. 47.
    Erdag G, Morgan JR (2004) Allogeneic versus xenogeneic immune reaction to bioengineered skin grafts. Cell Transplant 13:701–712CrossRefPubMedGoogle Scholar
  48. 48.
    Morimoto N, Saso Y, Tomihata K et al (2005) Viability and function of autologous and allogeneic fibroblasts seeded in dermal substitutes after implantation. J Surg Res 125:56–67CrossRefPubMedGoogle Scholar
  49. 49.
    Dantzer E, Queruel P, Salinier L et al (2003) Dermal regeneration template for deep hand burns: clinical utility for both early grafting and reconstructive surgery. Br J Plast Surg 56:764–774CrossRefPubMedGoogle Scholar
  50. 50.
    Rennekampff HO, Hansbrough JF, Woods V Jr, Kiessig V (1996) Integrin and matrix molecule expression in cultured skin replacements. J Burn Care Rehabil 17:213–221CrossRefPubMedGoogle Scholar
  51. 51.
    Griffiths M, Ojeh N, Livingstone R et al (2004) Survival of Apligraf in acute human wounds. Tissue Eng 10:1180–1195PubMedGoogle Scholar
  52. 52.
    Falanga V, Margolis D, Alvarez O et al (1998) Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent. Human Skin Equivalent Investigators Group. Arch Dermatol 134:293–300Google Scholar
  53. 53.
    Hong KU, Reynolds SD, Watkins S et al (2004) Basal cells are a multipotent progenitor capable of renewing the bronchial epithelium. Am J Pathol 164:577–588PubMedGoogle Scholar
  54. 54.
    Cooper DK, Keogh AM, Brink J et al (2000) Report of the Xenotransplantation Advisory Committee of the International Society for Heart and Lung Transplantation: the present status of xenotransplantation and its potential role in the treatment of end-stage cardiac and pulmonary diseases. J Heart Lung Transplant 19:1125CrossRefPubMedGoogle Scholar
  55. 55.
    Golob JF, Federspiel WJ, Merrill TL et al (2001) Acute in vivo testing of an intravascular respiratory support catheter. ASOI J 47:432CrossRefGoogle Scholar
  56. 56.
    Bishop AE (2004) Pulmonary epithelial stem cells. Cell Prolif 37: 89Google Scholar
  57. 57.
    Samadikuchaksaraei A, Cohen S, Isaac K et al (2006) Derivation of distal airway epithelium from human embryonic stem cells. Tissue Eng 12:867–875CrossRefPubMedGoogle Scholar
  58. 58.
    Welsh MJ, Ramsey BW, Accurso FJ, Cutting GR (2001) Cystic fibrosis. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease. 8th edn. McGraw-Hill, New York. pp. 5121–5188Google Scholar
  59. 59.
    Van Vranken BE, Romanska HM, Polak JM et al (2005) Coculture of embryonic stem cells with pulmonary mesenchyme: a microenvironment that promotes differentiation of pulmonary epithelium. Tissue Eng 11:1177–1187CrossRefPubMedGoogle Scholar
  60. 60.
    Wang D, Haviland DL, Burns AR et al (2007) A pure population of lung alveolar epithelial type II cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 104:4449–4454CrossRefPubMedGoogle Scholar
  61. 61.
    Wang D, Morales JE, Calame DG et al (2010) Transplantation of human embryonic stem cellderived alveolar epithelial type II cells abrogates acute lung injury in mice. Mol Ther 18:625–634CrossRefPubMedGoogle Scholar
  62. 62.
    Moodley Y, Ilancheran S, Samuel C et al (2010) Human Amnion Epithelial Cell Transplantation Abrogates Lung Fibrosis and Augments Repair. Am J Respir Crit Care Med (in press)Google Scholar
  63. 63.
    Moodley Y, Atienza D, Manuelpillai U et al (2009) Human umbilical cord mesenchymal stem cells reduce fibrosis of bleomycin-induced lung injury. Am J Pathol 175:303–313CrossRefPubMedGoogle Scholar
  64. 64.
    Montemurro T, Andriolo G, Montelatici E et al (2010) Differentiation and migration properties of human fetal umbilical cord perivascular cells: potential for lung repair. J Cell Mol Med doi:10.1111/j.1582-4934.2010.01047.xGoogle Scholar
  65. 65.
    Cargnoni A, Gibelli L, Tosini A et al (2009) Transplantation of allogeneic and xenogeneic placenta-derived cells reduces bleomycin-induced lung fibrosis. Cell Transplant 18:405–422CrossRefPubMedGoogle Scholar
  66. 66.
    Mazariegos GV, Kramer DJ, Lopez RC et al (2001) Safety observations in phase I clinical evaluation of the Excorp Medical Bioartificial Liver Support System after the first four patients. ASAIO J 47:471–475CrossRefPubMedGoogle Scholar
  67. 67.
    van de Kerkhove MP, Di Florio E, Scuderi V et al (2002) Phase I clinical trial with the AMCbioartificial liver. Academic Medical Center. Int J Artif Organs 25:950–959Google Scholar
  68. 68.
    Ding YT, Qiu YD, Chen Z, et al (2003) The development of a new bioartificial liver and its application in 12 acute liver failure patients. World J Gastroenterol 9:829–832PubMedGoogle Scholar
  69. 69.
    Demetriou AA, Brown RS Jr, Busuttil RW et al (2004) Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg 239:660–667; discussion 667-670CrossRefPubMedGoogle Scholar
  70. 70.
    Morsiani E, Pazzi P, Puviani AC et al (2002) Early experiences with a porcine hepatocyte-based bioartificial liver in acute hepatic failure patients. Int J Artif Organs 25:192–202PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2011

Authors and Affiliations

  • Alfonso Barbarisi
    • 1
  • Francesco Rosso
    • 1
  1. 1.Department of Anesthesiology, Surgical and Emergency SciencesSecond University of NaplesNaplesItaly

Personalised recommendations