New Approach to Diagnosis and Prognosis

Part of the Updates in Surgery book series (UPDATESSURG, volume 0)


Peritoneal carcinomatosis is the spreading of malignant cells into the peritoneal cavity. The peritoneal dissemination of cancer cells is the deposition of malignant cells onto parietal or visceral peritoneal surfaces, associated or less with the accumulation of malignant ascites. The ascites is rich in growth factors, bioactive lipids, extracellular matrix (ECM) components, inflammatory mediators, and proteolytic enzymes, creating a neoplastic microenvironment that fosters further metastatic spread. Primary peritoneal carcinomatosis is rare, whereas a secondary peritoneal carcinomatosis of ovarian (60% of ovarian cancer), gastric (40%) and colorectal cancer (15%) is frequently ob


Circulate Tumor Cell Peritoneal Carcinomatosis Circulate Tumor Cell Detection Primary Peritoneal Carcinomatosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Averbach AM, Jacquet P, Sugarbaker PH (1995) Surgical technique and colorectal cancer: Impact on local recurrence and survival. Tumori 81:65–71PubMedGoogle Scholar
  2. 2.
    Carmignani CP, Sugarbaker TA, Bromley CM et al (2003) Intraperitoneal cancer dissemination: Mechanisms of the patterns of spread. Cancer Metastasis Rev 22:465–472PubMedCrossRefGoogle Scholar
  3. 3.
    Yonemura Y, Bandou E, Kawamura T et al (2006) Quantitative prognostic indicators of peritoneal dissemination of gastric cancer. Eur J Surg Oncol 32:602–606PubMedCrossRefGoogle Scholar
  4. 4.
    Kokenyesi R, Murray KP, Benshushan A et al (2003) Invasion of interstitial matrix by a novel cell line from primary peritoneal carcinosarcoma, and by established ovarian carcinoma cell lines: role of cell-matrix adhesion molecules, proteinases, and E-cadherin expression. Gynecol Oncol 89:60–72PubMedCrossRefGoogle Scholar
  5. 5.
    Wong AST, Maines-Bandiera SL, Rosen B et al (1999) Constitutive and conditional cadherin expression in cultured human ovarian surface epithelium: influence of family history of ovarian cancer. Int J Cancer 81:180–188PubMedCrossRefGoogle Scholar
  6. 6.
    Davies BR, Worsley SD, Ponder BA (1998) Expression of E-cadherin, alpha-catenin and betacatenin in normal ovarian surface epithelium and epithelial ovarian cancers. Histopathology 32:69–80PubMedCrossRefGoogle Scholar
  7. 7.
    Veatch AL, Carson LF, Ramakrishnan S (1994) Differential expression of the cell-cell adhesion molecule E-cadherin in ascites and solid human ovarian tumour cells. Int J Cancer 58:393–399PubMedCrossRefGoogle Scholar
  8. 8.
    Fujimoto J, Ichigo S, Hirose R et al (1997) Expression of E-cadherin and alpha-and beta-catenin mRNAs in ovarian cancers. Cancer Lett 115:207–212PubMedCrossRefGoogle Scholar
  9. 9.
    Meyers MA (1973) Distribution of intraabdominal malignant seeding—dependency on dynamics of flow of ascitic fluid. Am J Roentgenol 119:198–206Google Scholar
  10. 10.
    Lindberg U, Karlsson R, Lassing I et al (2008) The microfilament system and malignancy. Semin Cancer Biol 18:2–11PubMedCrossRefGoogle Scholar
  11. 11.
    Bittinger F, Klein CL, Skarke C et al (1996) PECAM-1 expression in human mesothelial cells: an in vitro study. Pathobiology 64:320–327PubMedCrossRefGoogle Scholar
  12. 12.
    Ziprin P, Alkhamesi NA, Ridgway PF et al (2004) Tumour-expressed CD43 (sialophorin) mediates tumour-mesothelial cell adhesion. Biol Chem 385:755–761PubMedCrossRefGoogle Scholar
  13. 13.
    Cannistra SA, Kansas GS, Niloff J et al (1993) Binding of ovarian-cancer cells to peritoneal mesothelium in-vitro is partly mediated by Cd44h. Cancer Res 53:3830–3838PubMedGoogle Scholar
  14. 14.
    Belizon A, Balik E, Feingold DL et al (2006). Major abdominal surgery increases plasma levels of vascular endothelial growth factor—open more so than minimally invasive methods. Ann Surg 244:792–798PubMedCrossRefGoogle Scholar
  15. 15.
    Sawada K, Radjabi AR, Shinomiya N et al (2007) c-Met overexpression is a prognostic factor in ovarian cancer and an effective target for inhibition of peritoneal dissemination and invasion. Cancer Res 67:1670–1679PubMedCrossRefGoogle Scholar
  16. 16.
    Barbolina MV, Adley BR, Shea LD et al (2007) Wilms tumour gene protein 1 is associated with ovarian cancer metastasis and modulates cell invasion. Cancer 112:1632–1641CrossRefGoogle Scholar
  17. 17.
    Yonemura Y, Fujimura T, Ninomiya I et al (2001) Prediction of peritoneal micrometastasis by peritoneal lavaged cytology and reverse transcriptase-polymerase chain reaction for matrix metalloproteinase-7 mRNA. Clin Cancer Res 7:1647–1653PubMedGoogle Scholar
  18. 18.
    Varghese S, Burness M, Xu H et al (2007) Site-specific gene expression profiles and novel molecular prognostic factors in patients with lower gastrointestinal adenocarcinoma diffusely metastatic to liver or peritoneum. Ann Surg Oncol 14:3460–3471PubMedCrossRefGoogle Scholar
  19. 19.
    Kotanagi H, Saito Y, Yoshioka T et al (1998) Characteristics of two cancer cell lines derived from metastatic foci in liver and peritoneum of a patient with colon cancer. J Gastroenterol 33:842–849PubMedCrossRefGoogle Scholar
  20. 20.
    Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524PubMedCrossRefGoogle Scholar
  21. 21.
    Brivio F, Lissoni P, Rovelli F et al (2002) Effects of IL-2 preoperative immunotherapy on surgery-induced changes in angiogenic regulation and its prevention of VEGF increase and IL-12 decline. Hepato-Gastroenterol 49:385–387Google Scholar
  22. 22.
    McCormack PL, Keam SJ (2008) Bevacizumab—a review of its use in metastatic colorectal cancer. Drugs 68:487–506PubMedCrossRefGoogle Scholar
  23. 23.
    Helguera G, Rodriguez JA, Penichet ML (2006) Cytokines fused to antibodies and their combinations as therapeutic agents against different peritoneal HER2/neu expressing tumours. Mol Cancer Ther 5:1029–1040PubMedCrossRefGoogle Scholar
  24. 24.
    Niers TM, Klerk CPW, DiNisio M et al (2007) Mechanisms of heparin induced anti-cancer activity in experimental cancer models. Crit Rev Oncol Hematol 61:195–207PubMedCrossRefGoogle Scholar
  25. 25.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  26. 26.
    Asahara T, Kawamoto A (2004) Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol 287:C572–C579PubMedCrossRefGoogle Scholar
  27. 27.
    Lyden D, Hattori K, Dias S et al (2001) Impaired recruitment of bone marrow derived endothelial and hematopoietic precursor cells blocks tumour angiogenesis and growth. Nature Med 7:1194–1201PubMedCrossRefGoogle Scholar
  28. 28.
    Nolan D, Ciarrocchi A, Mellick AS et al (2007) Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumour neovascularisation. Gene Dev 21:1546PubMedCrossRefGoogle Scholar
  29. 29.
    Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967PubMedCrossRefGoogle Scholar
  30. 30.
    Shi Q, Rafii S, Wu MH et al (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367PubMedGoogle Scholar
  31. 31.
    Gehling UM, Ergun S, Schumacher U et al (2000) In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 95:3106–3112PubMedGoogle Scholar
  32. 32.
    Goon PK, Lip GY, Boos CJ et al (2006) Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer. Neoplasia 8:79–88PubMedCrossRefGoogle Scholar
  33. 33.
    Rafii S, Lyden D, Benezra R et al (2002) Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nature Reviews Cancer 2:826–835PubMedCrossRefGoogle Scholar
  34. 34.
    Bruno S, Bussolati B, Grange C et al (2006) CD133+ renal progenitor cells contribute to tumor angiogenesis. Am J Pathol 169:2223–2235PubMedCrossRefGoogle Scholar
  35. 35.
    Ergün S, Hohn HP, Kilic N et al (2008) Endothelial and hematopoietic progenitor cells (EPCs and HPCs): hand in hand fate determining partners for cancer cells. Stem Cell Rev 4: 169–177PubMedCrossRefGoogle Scholar
  36. 36.
    Rajantie I, Ilmonen M, Alminaite A et al (2004) Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 104:2084–2086PubMedCrossRefGoogle Scholar
  37. 37.
    Garcia-Barros M, Paris F, Cordon-Cardo C et al (2003) Tumour response to radiotherapy regulated by endothelial cell apoptosis. Science 300:1155–1159PubMedCrossRefGoogle Scholar
  38. 38.
    Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularisation and regeneration. Nat Med 9:702–712PubMedCrossRefGoogle Scholar
  39. 39.
    Bellik L, Musilli C, Vinci MC et al (2008) Human mature endothelial cells modulate peripheral blood mononuclear cells differentiation toward an endothelial phenotype. Exp Cell Research 314:2965–2974CrossRefGoogle Scholar
  40. 40.
    Mancuso P, Burlini A, Pruneri G et al (2001) Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood 97:3658–3661PubMedCrossRefGoogle Scholar
  41. 41.
    Peters BA, Diaz LA, Polyak K et al (2005) Contribution of bone marrow-derived endothelial cells to human tumour vasculature. Nature Med 11:261–262PubMedCrossRefGoogle Scholar
  42. 42.
    Gao D, Nolan DJ, Mellick AS et al (2008) Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science 319:195–198PubMedCrossRefGoogle Scholar
  43. 43.
    Kaplan RN, Rafii S, Lyden D (2006) Preparing the “soil”: the premetastatic niche. Cancer Res 66:11089–11093PubMedCrossRefGoogle Scholar
  44. 44.
    Kaplan RN, Riba RD, Zacharoulis S et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438:820–827PubMedCrossRefGoogle Scholar
  45. 45.
    Hlatky L, Hahnfeldt P, Folkman J (2002) Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst 94:883–893PubMedGoogle Scholar
  46. 46.
    Murukesh N, Dive C, Jayson GC (2010) Biomarkers of angiogenesis and their role in the development of VEGF inhibitors. Br J Cancer 102:8–18PubMedCrossRefGoogle Scholar
  47. 47.
    Bertolini F, Shaked Y, Mancuso P et al (2006) The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nature Rev Cancer 6:835–845CrossRefGoogle Scholar
  48. 48.
    Case J, Mead LE, Bessler WK et al (2007) Human CD34+CD133+KDR+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol 35:1109–1118PubMedCrossRefGoogle Scholar
  49. 49.
    Delorme B, Basire A, Gentile C et al (2005) Presence of endothelial progenitor cells, distinct from mature endothelial cells, within human CD146+ blood cells. Thromb Haemost 94:1270–1279PubMedGoogle Scholar
  50. 50.
    Duda DG, Cohen KS, Scadden DT et al (2007) A protocol for phenotypic detection and enumeration of circulating endothelial cells and circulating progenitor cells in human blood. Nat Protoc 2:805–810PubMedCrossRefGoogle Scholar
  51. 51.
    Goon PK, Lip GY, Stonelake PS et al (2009) Circulating endothelial cells and circulating progenitor cells in breast cancer: relationship to endothelial damage/dysfunction/apoptosis, clinicopathologic factors, and the Nottingham Prognostic Index. Neoplasia 11:771–779PubMedGoogle Scholar
  52. 52.
    Nowak K, Rafat N, Belle S et al (2010) Circulating endothelial progenitor cells are increased in human lung cancer and correlate with stage of disease. Eur J Cardio-Thorac 37:758–763CrossRefGoogle Scholar
  53. 53.
    Brunner M, Thurnher D, Heiduschka G et al (2008) Elevated levels of circulating endothelial progenitor cells in head and neck cancer patients. J Surg Oncology 98:545–550CrossRefGoogle Scholar
  54. 54.
    Igreja C, Courinha M, Cachaço AS et al (2007) Characterization and clinical relevance of circulating and biopsy-derived endothelial progenitor cells in lymphoma patients. Haematologica 92:469–477PubMedCrossRefGoogle Scholar
  55. 55.
    Lin EH, Hassan M, Li Y et al (2007) Elevated circulating endothelial progenitor marker CD133 messenger RNA levels predict colon cancer recurrence. Cancer 110:534–542PubMedCrossRefGoogle Scholar
  56. 56.
    Roodhart JM, Langenberg MH, Vermaat JS et al (2010) Late release of circulating endothelial lial cells and endothelial progenitor cells after chemotherapy predicts response and survival in cancer patients. Neoplasia 12:87–94PubMedGoogle Scholar
  57. 57.
    Willett CG, Boucher Y, Duda DG et al (2005) Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients. J Clin Oncol 23:8136–8139PubMedCrossRefGoogle Scholar
  58. 58.
    Capillo M, Mancuso P, Gobbi A et al (2003) Continuous infusion of endostatin inhibits differentiation, mobilization, and clonogenic potential of endothelial cell progenitors. Clin Cancer Res 9:377–382PubMedGoogle Scholar
  59. 59.
    Crane CH, Winter K, Regine WF et al (2009) Phase II study of bevacizumab with concurrent capecitabine and radiation followed by maintenance gemcitabine and bevacizumab for locally advanced pancreatic cancer: Radiation Therapy Oncology Group RTOG 0411. J Clin Oncol 27:4096–4102PubMedCrossRefGoogle Scholar
  60. 60.
    Prenen H, Tejpar S, Van Cutsem E (2009) Impact of molecular markers on treatment selection in advanced colorectal cancer. Eur J Cancer 45[Suppl 1]:70–78PubMedCrossRefGoogle Scholar
  61. 61.
    van Beijnum JR, Dings RP, van der Linden E et al (2006) Gene expression of tumor angiogenesis dissected: specific targeting of colon cancer angiogenic vasculature. Blood 108:2339–2348PubMedCrossRefGoogle Scholar
  62. 62.
    Wei J, Blum S, Unger M et al (2004) Embryonic endothelial progenitor cells armed with a suicide gene target hypoxic lung metastases after intravenous delivery. Cancer Cell 5:477–488PubMedCrossRefGoogle Scholar
  63. 63.
    Hruban RH, Maitra A, Goggins M (2008) Update on pancreatic intraepithelial neoplasia. Int J Clin Exp Pathol 1:306–16PubMedGoogle Scholar
  64. 64.
    Feldmann G, Beaty R, Hruban RH, Maitra A (2007) Molecular genetics of pancreatic intraepithelial neoplasia. J Hepatobiliary Pancreat Surg 14:224–232PubMedCrossRefGoogle Scholar
  65. 65.
    Goggins M (2007) Identifying molecular markers for the early detection of pancreatic cancer. Seminar Oncol 34:303–310CrossRefGoogle Scholar
  66. 66.
    Bardeesy N, DePinho RA (2002) Pancreatic cancer biology and genetics. Nat Rev Cancer 2:897–909PubMedCrossRefGoogle Scholar
  67. 67.
    Rozenblum E, Schutte M, Goggins M et al (2007) Tumor-suppressive pathways in pancreatic carcinoma. Cancer Res 57:1731–1734Google Scholar
  68. 68.
    Streit S, Michalski CW, Erkan M et al (2009) Confirmation of DNA microarray-derived differentially expressed genes in pancreatic cancer using quantitative RT-PCR. Pancreatology 9:577–582PubMedCrossRefGoogle Scholar
  69. 69.
    Hruban RH, Offerhaus GJ, Kern SE et al (1998) Tumor-suppressor genes in pancreatic cancer. J Hepatobiliary Pancreat Surg 5:383–391PubMedCrossRefGoogle Scholar
  70. 70.
    Slebos RJ, Hoppin JA, Tolbert PE et al (2000) K-ras and p53 in pancreatic cancer: association with medical history, histopathology, and environmental exposures in a population-based study. Cancer Epidemiol Biomarkers Prev 9:1223–1232PubMedGoogle Scholar
  71. 71.
    Karhu R, Mahlamäki E, Kallioniemi A (2006) Pancreatic adenocarcinoma — genetic portrait from chromosomes to microarrays. Genes Chromosomes Cancer 45:721–730PubMedCrossRefGoogle Scholar
  72. 72.
    Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ (1999) High density synthetic oligonucleotide arrays. Nat Genet 21:20–24PubMedCrossRefGoogle Scholar
  73. 73.
    Pollack JR, Perou CM, Alizadeh AA et al (1999) Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 23:41–46PubMedCrossRefGoogle Scholar
  74. 74.
    Haab BB (2001) Advances in protein microarray technology for protein expression and interaction profiling. Curr Opin Drug Discov Dev 4:116–123Google Scholar
  75. 75.
    Wodicka L, Dong H, Mittmann M et al (1997) Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnol 15:1359–1367CrossRefGoogle Scholar
  76. 78.
    Schulze A, Downward J (2001) Navigating gene expression using microarrays—a technology review. Nat Cell Biol 3:E190–E195PubMedCrossRefGoogle Scholar
  77. 80.
    Kuo WP, Jenssen TK, Butte AJ (2002) Analysis of matched mRNA measurements from two different microarray technologies. Bioinformatics 18:405–412PubMedCrossRefGoogle Scholar
  78. 81.
    Grützmann R, Saeger HD, Lüttges J et al (2004) Microarray-based gene expression profiling in pancreatic ductal carcinoma: status quo and perspectives. Int J Colorectal Dis 19(5):401–13PubMedCrossRefGoogle Scholar
  79. 82.
    Friess H, Ding J, Kleeff J et al (2003) Microarray-based identification of differentially expressed growth-and metastasis-associated genes in pancreatic cancer. Cell Mol Life Sci 60:1180–1199PubMedGoogle Scholar
  80. 83.
    Crnogorac-Jurcevic T, Missiaglia E, Blaveri E et al (2003) Molecular alterations in pancreatic carcinoma: expression profiling shows that dysregulated expression of S100 genes is highly prevalent. J Pathol 201:63–74PubMedCrossRefGoogle Scholar
  81. 84.
    Iacobuzio-Donahue CA, Maitra A, Shen-Ong GL et al (2002) Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am J Pathol 160:1239–1249PubMedGoogle Scholar
  82. 85.
    Logsdon CD, Simeone DM, Binkley C et al (2003) Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res 63:2649–2657PubMedGoogle Scholar
  83. 86.
    Iacobuzio-Donahue CA, Maitra A, Olsen M (2003) Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol 162:1151–1162PubMedGoogle Scholar
  84. 87.
    Han H, Bearss DJ, Browne LW (2002) Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Res 62:2890–2896PubMedGoogle Scholar
  85. 88.
    Tan ZJ, Hu XG, Cao GS, Tang Y (2003) Analysis of gene expression profile of pancreatic carcinoma using cDNA microarray. World J Gastroenterol 9:818–823PubMedGoogle Scholar
  86. 89.
    Grutzmann R, Foerder M, Alldinger I et al (2003) Gene expression profiles of microdissected pancreatic ductal adenocarcinoma. Virchows Arch 443:508–517PubMedCrossRefGoogle Scholar
  87. 90.
    Furutani M, Arii S, Mizumoto M et al (1998) Identification of a neutrophil gelatinase-associated lipocalin mRNA in human pancreatic cancers using a modified signal sequence trap method. Cancer Lett 122:209–214PubMedCrossRefGoogle Scholar
  88. 91.
    Cantero D, Friess H, Deflorin J et al (1997) Enhanced expression of urokinase plasminogen activator and its receptor in pancreatic carcinoma. Br J Cancer 75:388–395PubMedCrossRefGoogle Scholar
  89. 92.
    Moll R (1994) Cytokeratins in the histological diagnosis of malignant tumors. Int J Biol Markers 9:63–69PubMedGoogle Scholar
  90. 93.
    Sinha P, Hutter G, Kottgen E et al (1999) Increased expression of epidermal fatty acid binding protein, cofilin, and 14-3-3-sigma (stratifin) detected by two-dimensional gel electrophoresis, mass spectrometry and microsequencing of drug-resistant human adenocarcinoma of the pancreas. Electrophoresis 20:2952–2960PubMedCrossRefGoogle Scholar
  91. 94.
    Juhl H, Helmig F, Baltzer K et al (1997) Frequent expression of complement resistance factors CD46, CD55, and CD59 on gastrointestinal cancer cells limits the therapeutic potential of monoclonal antibody 17-1A. J Surg Oncol 64:222–230PubMedCrossRefGoogle Scholar
  92. 95.
    Touab M, Villena J, Barranco C et al (2002) Versican is differentially expressed in human melanoma and may play a role in tumor development. Am J Pathol 160:549–557PubMedGoogle Scholar
  93. 96.
    Chang YS, Kong G, Sun S et al (2002) Clinical significance of insulin-like growth factorbinding protein-3 expression in stage I non-small cell lung cancer. Clin Cancer Res 8:3796–3802PubMedGoogle Scholar
  94. 97.
    Ilantzis C, DeMarte L, Screaton RA, Stanners CP (2002) Deregulated expression of the human tumor marker CEA and CEA family member CEACAM6 disrupts tissue architecture and blocks colonocyte differentiation. Neoplasia 4:151–163PubMedCrossRefGoogle Scholar
  95. 98.
    Pantalone D, Pelo E, Minuti B et al (2004) p53 and DPC4 alterations in the bile of patients with pancreatic carcinoma. J Surg Oncol 88(4):210–6PubMedCrossRefGoogle Scholar
  96. 99.
    Castiglione F, Taddei A, Buccoliero AM et al (2008) TNM staging and T-cell receptor gamma expression in colon adenocarcinoma. Correlation with disease progression? Tumori 94:384–388Google Scholar
  97. 100.
    Gold P, Freedman SO (1965) Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques. J Exp Med 121:439–462PubMedCrossRefGoogle Scholar
  98. 101.
    Brand S, Dambacher J, Beigel F et al (2005) CXCR4 and CXCL12 are inversely expressed in colorectal cancer cells and modulate cancer cell migration, invasion and MMP-9 activation. Exp Cell Res 310:117–130PubMedCrossRefGoogle Scholar
  99. 102.
    Gold P, Freedman SO (1965) Specific carcinoembryonic antigens of the human digestive system. J Exp Med 122:467–481PubMedCrossRefGoogle Scholar
  100. 103.
    Thomson DM, Krupey J, Freedman SO, Gold P (1969) The radioimmunoassay of circulating carcinoembryonic antigen of the human digestive system. Proc Natl Acad Sci U S A 64(1P):161–167PubMedCrossRefGoogle Scholar
  101. 104.
    Mori M, Mimori K, Ueo H et al (1996) Molecular detection of circulating solid carcinoma cells in the peripheral blood: the concept of early systemic disease. Int J Cancer 68:739–743PubMedCrossRefGoogle Scholar
  102. 105.
    Boucher D, Cournoyer D, Stanners CP, Fuks A (1989) Studies on the control of gene expression of the carcinoembryonic antigen family in human tissue. Cancer Res 49:847–852PubMedGoogle Scholar
  103. 106.
    Muscariello L, Rosso F, Marino G et al (2005) A critical overview of ESEM biological applications. J Cell Physiol 205:328–334PubMedCrossRefGoogle Scholar
  104. 107.
    Hughes RC (1997) The galectin family of mammalian carbohydrate-binding molecules. Biochem Soc Transact 25: 1194–1198Google Scholar
  105. 108.
    Liu FT, Patterson RJ, Wang JL (2002) Intracellular functions of galectins. Biochim Biophys Acta 1572:263–273PubMedGoogle Scholar
  106. 109.
    Rabinovich GA, Baum LG, Tinari N et al (2002) Galectins and their ligands: Amplifiers, silencers or tuners of the inflammatory response? Trends Immunol 23:313–320PubMedCrossRefGoogle Scholar
  107. 110.
    Berberat PO, Friess H, Wang L et al (2001) Comparative analysis of galectins in primary tumors and tumor metastasis in human pancreatic cancer. J Histochem Cytochem 49:539–549PubMedGoogle Scholar
  108. 111.
    Inohara H, Honjo Y, Yoshii T et al (1999) Expression of galectin-3 in fine-needle aspirates as a diagnostic marker differentiating benign from malignant thyroid neoplasms. Cancer 85:2475–2484PubMedCrossRefGoogle Scholar
  109. 112.
    Gasbarri A, Martegani MP, Del Prete F et al (1999) Galectin-3 and CD44v6 isoforms in the preoperative evaluation of thyroid nodules. J Clin Oncol 17:3494–3502PubMedGoogle Scholar
  110. 113.
    Yoshii T, Inohara H, Takenaka Y et al (2001) Galectin-3 maintains the transformed phenotype of thyroid papillary carcinoma cells. Int J Oncol 18:787–792PubMedGoogle Scholar
  111. 114.
    Takenaka Y, Inohara H, Yoshii T et al (2003) Malignant transformation of thyroid follicular cells by galectin-3. Cancer Lett 195:111–119PubMedCrossRefGoogle Scholar
  112. 115.
    Hubert M, Wang SY, Wang JL et al (1995) Intranuclear distribution of galectin-3 in mouse 3T3 fibroblasts: comparative analyses by immunofluorescence and immunoelectron microscopy. Exp Cell Res 220:397–406PubMedCrossRefGoogle Scholar
  113. 116.
    Muscariello L, Rosso F, Marino G et al (2008) Cell surface protein detection with immunogold labelling in ESEM: optimisation of the method and semi-quantitative analysis. J Cell Physiol 214:769–776PubMedCrossRefGoogle Scholar
  114. 117.
    Cytyc Corporation (1993) Operator’s manual: Thin-Prep Processor. Marlborough, MA: Cytyc CorporationGoogle Scholar
  115. 118.
    Stamataki M, Anninos D, Brountzos E et al (2008) The role of liquid-based cytology in the investigation of thyroid lesions. Cytopathology 19:11–18PubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2011

Authors and Affiliations

  1. 1.Department of Medical and Surgical Critical CareUniversity of Florence and Regional Reference Centre of Tuscany for Locoregional Perfusion TherapiesFlorenceItaly

Personalised recommendations