Carriage, Colonization and Infection

  • L. Silvestri
  • H. K. F. van Saene
  • J. J. M. van Saene


Physiologically, internal organs such as lower airways and bladder, are sterile. However, colonization of lower airways and bladder by potentially pathogenic microorganisms (PPMs) is common in critically ill patients. Colonization of the internal organs generally follows impaired carriage defense of the digestive tract, which promotes PPM carriage and overgrowth, and impaired defenses of the host against colonization due to illness severity. Failure to clear colonizing microorganisms from the internal organs invariably leads to high concentrations of PPMs, predisposing to infection. The host mobilizes both humoral and cellular defense systems to hinder the invading microorganisms.


Chronic Obstructive Pulmonary Disease Patient Intensive Care Unit Patient Lower Airway Mucociliary Clearance Primary Ciliary Dyskinesia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kerver AJH, Rommes JH, Mevissen-Verhage EAE et al (1987) Colonization and infection in surgical intensive care patients: a prospective study. Intensive Care Med 13:347–351PubMedCrossRefGoogle Scholar
  2. 2.
    Sarginson RE, Taylor N, van Saene HKF (2001) Glossary of terms and definitions. Curr Anaesth Crit Care 12:2–5CrossRefGoogle Scholar
  3. 3.
    Pittet D, Monod M, Suter PM et al (1994) Candida colonization and subsequent infections in critically ill surgical patients. Ann Surg 220:751–758PubMedCrossRefGoogle Scholar
  4. 4.
    Mobbs KJ, van Saene HKF, Sunderland D, Davies PDO (1999) Oropharyngeal Gram-negative bacillary carriage. A survey of 120 healthy individuals. Chest 115:1570–1575PubMedCrossRefGoogle Scholar
  5. 5.
    Rosseneu S, Rios G, Spronk PE, van Saene JJM (2005) Carriage. In: van Saene HKF, Silvestri L, de la Cal MA (eds) Infection control in the intensive care unit, 2nd edn. Springer, Milan, pp 15–36CrossRefGoogle Scholar
  6. 6.
    Sirvent JM, Torres A, Vidaur L et al (2000) Tracheal colonisation within 24 h of intubation in patients with head trauma: risk factor for developing early-onset ventilator-associated pneumonia. Intensive Care Med 26:1369–1372PubMedCrossRefGoogle Scholar
  7. 7.
    Ewig S, Torres A, El-Ebiary M et al (1999) Bacterial colonization patterns in mechanically ventilated patients with traumatic and medical injury. Incidence, risk factors and association with ventilator-associated pneumonia. Am J Respir Crit Care Med 159:188–198PubMedGoogle Scholar
  8. 8.
    Acquarolo A, Urli T, Perone G et al (2005) Antibiotic prophylaxis of early onset pneumonia in critically ill comatose patients. A randomized study. Intensive Care Med 31:510–516PubMedCrossRefGoogle Scholar
  9. 9.
    Mobbs KJ, van Saene HKF, Sunderland D, Davies PDO (1999) Oropharyngeal Gram-negative bacillary carriage in chronic obstructive pulmonary disease: relation to severity of disease. Respir Med 93:540–545PubMedCrossRefGoogle Scholar
  10. 10.
    Yamamoto C, Yoneda T, Yoshikawa M et al (1997) Airway inflammation in COPD patients assessed by sputum levels of interleukin-8. Chest 112:505–510PubMedCrossRefGoogle Scholar
  11. 11.
    Sethi S, Murphy TF (2001) Bacterial infection in chronic obstructive pulmonary disease in 2000: state of the art. Clin Microbiol Rev 14:336–363PubMedCrossRefGoogle Scholar
  12. 12.
    Hillman KM, Riordan T, O’Farrel SM, Tabacqchali S (1982) Colonization of the gastric content in critically ill patients. Crit Care Med 10:444–447PubMedCrossRefGoogle Scholar
  13. 13.
    Patel IS, Seemungal TA, Wilks M et al (2002) Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations. Thorax 57:753–754CrossRefGoogle Scholar
  14. 14.
    Silvestri L, Lenhart FP, Fox MA (2001) Prevention of intensive care unit infections. Curr Anaesth Crit Care 12:34–40CrossRefGoogle Scholar
  15. 15.
    Proctor RA (1987) Fibronectin: a brief overview of its structure function and physiology. Rev Infect Dis 9:S317–S312PubMedCrossRefGoogle Scholar
  16. 16.
    Dal Nogare AR, Toews GB, Pierce AK (1987) Increased salivary elastase precedes Gram-negative bacillary colonization in post-operative patients. Am Rev Respir Dis 135:671–675PubMedGoogle Scholar
  17. 17.
    Mestesky J, Russel M, Elson CO (1999) Intestinal IgA, novel views on its function in the defence of the largest mucosal surface. Gut 44:2–5CrossRefGoogle Scholar
  18. 18.
    Barber S, Wolf-Dietrich H (2011) Mechanisms controlling pathogen colonization of the gut. Curr Opin Microbiol 14:82–91CrossRefGoogle Scholar
  19. 19.
    Sokol H, Pigneur B, Watterlot L et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 105:16731–16736PubMedCrossRefGoogle Scholar
  20. 20.
    van Saene HKF, Damjanovic V, Alcock SR (2001) Basics in microbiology for the patient requiring intensive care. Curr Anaesth Crit Care 12:6–17CrossRefGoogle Scholar
  21. 21.
    Marshall JC, Christou NV, Meakins JL (1988) Small-bowel bacterial overgrowth and systemic immuno-suppression in experimental peritonitis. Surgery 104:404–411PubMedGoogle Scholar
  22. 22.
    van Uffelen R, van Saene HKF, Fidler V et al (1984) Oropharyngeal flora as a source of colonizing the lower airways in patients on artificial ventilation. Intensive Care Med 10:233–237PubMedCrossRefGoogle Scholar
  23. 23.
    Luiten EJT, Hop WCJ, Endtz HP et al (1988) Prognostic importance of Gram-negative intestinal colonization preceding pancreatic infection in severe acute pancreatitis. Intensive Care Med 24:438–445CrossRefGoogle Scholar
  24. 24.
    Oodstijk EAN, de Smet AMGA, Kesecioglu J, Bonten MJM, on behalf of the Dutch SOD-SDD trialists group (2011) The role of intestinal colonization with Gram-negative bacteria as a source for intensive care unit-acquired bacteremia. Crit Care Med 39:961–966CrossRefGoogle Scholar
  25. 25.
    Manson CM, Summer WR, Nelson S (1992) Pathophysiology of pulmonary defence mechanisms. J Crit Care 7:42–56CrossRefGoogle Scholar
  26. 26.
    Peacock SJ, Foster TJ, Cameron BJ, Berend R (1999) Bacterial fibronectin-binding proteins and endothelial cell surface fibronectin mediate adherence of Staphylococcus aureus to resting human endothelial cells. Microbiology 145:3477–3486PubMedGoogle Scholar
  27. 27.
    Mongodin E, Bajolet O, Cutrona J et al (2002) Fibronectin-binding proteins of Staphylococcus aureus are involved in adherence to human airway epithelium. Infect Immun 70:620–630PubMedGoogle Scholar
  28. 28.
    Cole P (2001) Pathophysiology and treatment of airway mucociliary clearance. Minerva Anestesiol 67:206–209PubMedGoogle Scholar
  29. 29.
    Hienzel FP (2000) Antibodies. In: Mandell GL, Bennett JE, Dolin R (eds) Mandell, Douglas and Bennett’s principles and practice of infectious diseases. Churchill Livingstone, Philadelphia, pp 45–67Google Scholar
  30. 30.
    Kass EH, Schneiderman LJ (1957) Entry of bacteria into the urinary tract of patients with implying catheters. N Engl J Med 256:556–557PubMedCrossRefGoogle Scholar
  31. 31.
    Kunin CM, Evans C, Bartholomew D, Bates DG (2002) The antimicrobial defense mechanism of the female urethra: a reassessment. J Urol 168:413–419PubMedCrossRefGoogle Scholar
  32. 32.
    Johanson WG Jr, Pierce AK, Sandford JP et al (1972) Nosocomial respiratory tract infections with Gram-negative bacilli: the significance of colonization of the respiratory tract. Ann Intern Med 77:701–706PubMedGoogle Scholar
  33. 33.
    Estes RJ, Meduri GU (1995) The pathogenesis of ventilator associated pneumonia: I. Mechanisms of bacterial trans-colonization and airway inoculation. Intensive Care Med 21:365–383PubMedCrossRefGoogle Scholar
  34. 34.
    Morar P, Makura Z, Jones A et al (2000) Topical antibiotics on tracheostoma prevent exogenous colonization and infection of lower airways in children. Chest 117:513–518PubMedCrossRefGoogle Scholar
  35. 35.
    Berg RD, Owens WE (1979) Inhibition of translocation of viable Escherichia coli from the gastrointestinal tract of mice by bacterial antagonism. Infect Immun 25:820–827PubMedGoogle Scholar
  36. 36.
    Alexander JW, Boyce ST, Babcock GF et al (1990) The process of microbial translocation. Ann Surg 212:496–510PubMedCrossRefGoogle Scholar
  37. 37.
    Tsujimoto H, Ono S, Mochizuki H (2009) Role of translocation of pathogen-associated molecular patterns in sepsis. Dig Surg 26:100–109PubMedCrossRefGoogle Scholar
  38. 38.
    Sganga G, van Saene HKF, Brisinda G, Castagneto M (2001) Bacterial translocation. In: van Saene HKF, Sganga G, Silvestri L (eds) Infection in the critically ill: an ongoing challenge. Springer, Milan, pp 35–45Google Scholar
  39. 39.
    Husebye E (1995) Gastro-intestinal motility disorders and bacterial overgrowth. J Intern Med 237:419–427PubMedCrossRefGoogle Scholar
  40. 40.
    Kane TD, Wesley Alexander J, Johannigman JA (1998) The detection of microbial DNA in the blood. A sensitive method for diagnosing bacteremia and/or bacterial translocation in surgical patients. Ann Surg 227:1–9PubMedCrossRefGoogle Scholar
  41. 41.
    Tancrede CH, Andremont AO (1985) Bacterial translocation and Gram-negative bacteremia in patients with hematological malignancies. J Infect Dis 152:99–103PubMedCrossRefGoogle Scholar
  42. 42.
    van Saene HKF, Taylor N, Donnell SC et al (2003) Gut overgrowth with abnormal flora: the missing link in parenteral nutrition-related sepsis in surgical neonates. Eur J Clin Nutr 57:548–553PubMedCrossRefGoogle Scholar
  43. 43.
    Feltis BA, Wells CL (2000) Does microbial translocation play a role in critical illness? Curr Opin Crit Care 6:117–122CrossRefGoogle Scholar
  44. 44.
    Coopersmith CM, Stromberg PE, Davis CG et al (2003) Sepsis from Pseudomonas aeruginosa pneumonia decreases intestinal proliferation and reduces gut epithelial cell cycle arrest. Crit Care Med 39:1630–1637CrossRefGoogle Scholar
  45. 45.
    Husain KD, Stromberg PE, Woolsey CA et al (2005) Mechanisms of decreased intestinal epithelial proliferation and increased apoptosis in murine acute lung injury. Crit Care Med 33:2350–2357PubMedCrossRefGoogle Scholar
  46. 46.
    Fukatsu K, Sakamoto S, Hara E et al (2005) Gut ischemia–reperfusion affects gut mucosal immunity: a possible mechanism for infectious complications after severe surgical insults. Crit Care Med 34:182–187CrossRefGoogle Scholar
  47. 47.
    Osterberg J, Ljungdahl M, Haglund U (2006) Influence of cyclooxygenase inhibitors on gut immune cell distribution and apoptosis rate in experimental sepsis. Shock 25:147–154PubMedCrossRefGoogle Scholar
  48. 48.
    van Saene HKF (2008) The history of SDD. In: an der Voort PHJ, van Saene HKF (eds) Selective digestive decontamination in intensive care medicine. Springer, Milan, pp 1–35CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2011

Authors and Affiliations

  • L. Silvestri
    • 1
  • H. K. F. van Saene
    • 2
  • J. J. M. van Saene
    • 2
  1. 1.Department of Emergency, Unit of Anesthesia and Intensive CarePresidio Ospedaliero di GoriziaGoriziaItaly
  2. 2.Institute for Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolUK

Personalised recommendations