Towards a Neurophysiology of Language

  • Stefano F. Cappa


Scientific study of the relationship between language and the human brain started in the second half of the nineteenth century, as one of the many aspects of experimental medicine, and, in particular, of experimental physiology [1]. There is no need to retell a story that has already been told several times (for an excellent, very readable review, see [2]). The specific limitation in the case of language was, of course, that experimental studies in animals are not possible. However, an answer to this obstacle came from clinical neurology, when several astute physicians, whose names form the Hall of Fame of neuropsychology, such as Broca and Wernicke, inaugurated systematic application of the anatomico-clinical method to the study of language disorders. The logic of this approach took advantage of those accidents of nature, i.e., spontaneously occurring brain lesions. Information gathered from observations of the clinical picture, combined with knowledge about the location of the lesion in the brain, allowed the “localization” of cognitive functions to discrete brain regions. In the case of language, this led to the development of the classical Wernicke-Lichtheim model of word processing, which still finds an honorable place in practically every textbook dealing with aphasia [3]. The model’s fortunes and, in general, those of what Head called the “diagram-makers,” have fluctuated over the years—with eclipses during the golden age of gestalt psychology and, sometime, later, by the advent of behaviorism [4]. What is important to underline here is that acceptance of the idea that complex aspects of language, such as syntax, or the lexicon, could be localized to specific brain areas has gone largely unchallenged well into the era of cognitive neuroscience.


Diffusion Tensor Imaging Semantic Dementia Sentential Negation Anterior Temporal Lobe Arcuate Fasciculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Finger S (1994) Origins of neuroscience. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Shorto R (2008) Descartes’ bones: a skeletal history of the conflict between faith and reason. Doubleday, New YorkGoogle Scholar
  3. 3.
    Poeppel D, Hickok G (2004) Towards a new functional anatomy of language. Cognition 92:1–12CrossRefPubMedGoogle Scholar
  4. 4.
    Cappa SF (2007) Linguaggio. In: Gallese V (ed) Dizionario storico delle Neuroscienze. Einaudi, TorinoGoogle Scholar
  5. 5.
    Demonet JF, Thierry G, Cardebat D (2005) Renewal of the neurophysiology of language: functional neuroimaging. Physiol Rev 85:49–95CrossRefPubMedGoogle Scholar
  6. 6.
    Indefrey P, Levelt P (2000) The neural correlates of language production. In: Gazzaniga MS (ed) The new cognitive neurosciences. The MIT Press, CambridgeGoogle Scholar
  7. 7.
    Brain R (1961) The neurology of language. Brain 84:145–166CrossRefGoogle Scholar
  8. 8.
    Legrenzi P, Umiltà C (2008) Neuromania. Il Mulino, Bologna.Google Scholar
  9. 9.
    Wernicke C (1874) Der aphasische Symptomencomplex. Cohn und Weigert, BreslauGoogle Scholar
  10. 10.
    Friston KJ, Price CJ, Fletcher P et al (1996) The trouble with cognitive subtraction. Neuroimage 4:97–104CrossRefPubMedGoogle Scholar
  11. 11.
    Penny WD, Stephan KE, Mechelli A, Friston KJ (2004) Modelling functional integration: a comparison of structural equation and dynamic causal models. Neuroimage 23 Suppl 1: S264–274CrossRefGoogle Scholar
  12. 12.
    Fitch WT, Hauser MD, Chomsky N (2005) The evolution of the language faculty: clarifications and implications. Cognition 97:179–210; discussion 211–125CrossRefPubMedGoogle Scholar
  13. 13.
    Abrahams BS, Tentler D, Perederiy JV et al (2007) Genome-wide analyses of human perisylvian cerebral cortical patterning. Proc Natl Acad Sci USA 104:17849–17854CrossRefPubMedGoogle Scholar
  14. 14.
    White SA, Fisher SE, Geschwind DH et al (2006) Singing mice, songbirds, and more: models for FOXP2 function and dysfunction in human speech and language. J Neurosci 26:10376–10379CrossRefPubMedGoogle Scholar
  15. 15.
    Grodzinsky Y, Friederici AD (2006) Neuroimaging of syntax and syntactic processing. Curr Opin Neurobiol 16:240–246CrossRefPubMedGoogle Scholar
  16. 16.
    Moro A (2008) The boundaries of Babel. The brain and the enigma of impossible languages. MIT Press, Cambridge, MAGoogle Scholar
  17. 17.
    Moro A, Tettamanti M, Perani D et al (2001) Syntax and the brain: disentangling grammar by selective anomalies. Neuroimage 13:110–118CrossRefPubMedGoogle Scholar
  18. 18.
    Tettamanti M, Alkadhi H, Moro A et al (2002) Neural correlates for the acquisition of natural language syntax. Neuroimage 17:700–709.CrossRefPubMedGoogle Scholar
  19. 19.
    Musso M, Moro A, Glauche V et al (2003) Broca’s area and the language instinct. Nat Neurosci 6:774–781CrossRefPubMedGoogle Scholar
  20. 20.
    Chomsky N (1986) Knowledge of language: its nature, origin and use. Praeger, New YorkGoogle Scholar
  21. 21.
    Tettamanti M, Rotondi I, Perani D et al (2009) Syntax without language: neurobiological evidence for cross-domain syntactic computations. Cortex 45:825–838CrossRefPubMedGoogle Scholar
  22. 22.
    Grodzinsky Y, Amunts K (2006) The Broca’s region. Oxford University Press, New YorkCrossRefGoogle Scholar
  23. 23.
    Koechlin E, Ody C, Kouneiher F (2003) The architecture of cognitive control in the human prefrontal cortex. Science 302:1181–1185CrossRefPubMedGoogle Scholar
  24. 24.
    Petrides M, Cadoret G, Mackey S (2005) Orofacial somatomotor responses in the macaque monkey homologue of Broca’s area. Nature 435:1235–1238CrossRefPubMedGoogle Scholar
  25. 25.
    Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192CrossRefPubMedGoogle Scholar
  26. 26.
    Rizzolatti G, Arbib MA (1998) Language within our grasp. Trends Neurosci 21:188–194CrossRefPubMedGoogle Scholar
  27. 27.
    Pulvermuller F (2005) Brain mechanisms linking language and action. Nat Rev Neurosci 6:576–582CrossRefPubMedGoogle Scholar
  28. 28.
    Fazio P, Cantagallo A, Craighero L et al (2009) Encoding of human action in Broca’s area. Brain 132:1980–1988CrossRefPubMedGoogle Scholar
  29. 29.
    Patterson K, Nestor PJ, Rogers TT (2007) Where do you know what you know? The representation of semantic knowledge in the human brain. Nat Rev Neurosci 8:976–988CrossRefPubMedGoogle Scholar
  30. 30.
    Barsalou LW (2008) Grounded cognition. Annu Rev Psychol 59:617–645CrossRefPubMedGoogle Scholar
  31. 31.
    Wernicke C (1885–1886/1977) Einige neuere Arbeiten ueber Aphasie. In: Eggert GH (ed) Wernicke’s works on aphasia: a sourcebook and review. Mouton, The HagueGoogle Scholar
  32. 32.
    Wernicke C (1900) Grundriss der Psychiatrie. Thieme, LeipzigGoogle Scholar
  33. 33.
    Prinz JJ (2002) Furnishing the mind: concepts and their perceptual basis. MIT Press, Cambridge, MAGoogle Scholar
  34. 34.
    Cappa SF (2008) Imaging studies of semantic memory. Curr Opin Neurol 21:669–675CrossRefPubMedGoogle Scholar
  35. 35.
    Martin A (2007) The representation of object concepts in the brain. Annu Rev Psychol 58:25–45CrossRefPubMedGoogle Scholar
  36. 36.
    Mahon BZ, Caramazza A (2008) A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. J Physiol Paris 102:59–70CrossRefPubMedGoogle Scholar
  37. 37.
    Hauk O, Johnsrude I, Pulvermuller F (2004) Somatotopic representation of action words in human motor and premotor cortex. Neuron 41:301–307CrossRefPubMedGoogle Scholar
  38. 38.
    Tettamanti M, Buccino G, Saccuman MC et al (2005) Listening to action-related sentences activates fronto-parietal motor circuits. J Cogn Neurosci 17:273–281CrossRefPubMedGoogle Scholar
  39. 39.
    Tettamanti M, Manenti R, Della Rosa PA et al (2008) Negation in the brain: modulating action representations. Neuroimage 43:358–367CrossRefPubMedGoogle Scholar
  40. 40.
    Geschwind N, Kaplan E (1962) A human cerebral disconnection syndrome. A preliminary report. Neurology 12:65–75Google Scholar
  41. 41.
    Catani M, ffytche DH (2005) The rises and falls of disconnection syndromes. Brain 128:2224–2239CrossRefPubMedGoogle Scholar
  42. 42.
    Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Dingle DJ (ed) Analysis of visual behavior. MIT Press, Cambridge, MAGoogle Scholar
  43. 43.
    Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25CrossRefPubMedGoogle Scholar
  44. 44.
    Rauschecker JP, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Nat Acad Sci USA 97:11800–11806CrossRefPubMedGoogle Scholar
  45. 45.
    Rauschecker JP, Scott SK (2009) Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat Neurosci 12:718–724CrossRefPubMedGoogle Scholar
  46. 46.
    Wise RJS (2003) Language systems in normal and aphasic human subjects: functional imaging studies and inferences from animal studies. Brit Med Bull 65:95–119CrossRefPubMedGoogle Scholar
  47. 47.
    Scott SK, Blank CC, Rosen S, Wise RJ (2000) Identification of a pathway for intelligible speech in the left temporal lobe. Brain 123:2400–2406CrossRefPubMedGoogle Scholar
  48. 48.
    Saur D, Schelter B, Schnell S, Kratochvil D et al (2010) Combining functional and anatomical connectivity reveals brain networks for auditory language comprehension. Neuroimage 49: 3187–3197CrossRefPubMedGoogle Scholar
  49. 49.
    Parker GJ, Luzzi S, Alexander DC et al (2005) Lateralization of ventral and dorsal auditory-language pathways in the human brain. Neuroimage 24:656–666CrossRefPubMedGoogle Scholar
  50. 50.
    Saur D, Kreher BW, Schnell S et al (2008) Ventral and dorsal pathways for language. Proc Natl Acad Sci USA 105:18035–18040CrossRefPubMedGoogle Scholar
  51. 51.
    Warren JE, Wise RJ, Warren JD (2005) Sounds do-able: auditory-motor transformations and the posterior temporal plane. Trends Neurosci 28:636–643PubMedGoogle Scholar
  52. 52.
    Friederici AD, Bahlmann J, Heim S et al (2006) The brain differentiates human and nonhuman grammars: functional localization and structural connectivity. Proc Natl Acad Sci USA 103:2458–2463CrossRefPubMedGoogle Scholar
  53. 53.
    Anwander A, Tittgemeyer M, von Cramon DY et al (2006) Connectivity-based parcellation of Broca’s area. Cereb Cortex 17:816–825CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia 2010

Authors and Affiliations

  • Stefano F. Cappa
    • 1
    • 2
  1. 1.Vita-Salute San Raffaele UniversityMilanItaly
  2. 2.Division of NeuroscienceSan Raffaele Scientific InstituteMilanItaly

Personalised recommendations