Electromagnetic Indices of Language Processing

  • Alice Mado Proverbio
  • Alberto Zani


In this chapter, we describe the processes underlying language comprehension, both in the visual modality of reading and in the auditory modality of listening, by focusing on the main stages of linguistic information processing, from the sensory to the symbolic levels. Given the particular nature of the research techniques used, linguistic production mechanisms will not be addressed here, because of the well-known motor-related electromagnetic artifacts induced by spontaneous speech. Briefly, linguistic production mechanisms are based on the ability to: formulate a thought by accessing conceptual representations, provide it with a correct structure from the lexical (semantics) and syntactic points of view (ordering and attribution of roles), access the phonologic and phonemic form of the various discourse parts (nouns, verbs, function words), pre-program the muscular and articulatory movements involved in phonation, and implement those commands by performing the emission of appropriate linguistic phonemes fluently and with the right prosody.


Letter String Rapid Serial Visual Presentation Dyslexic Child Pseudoword Reading Lexical Route 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Coltheart M, Rastle K, Perry C et al (2001) DRC: a dual route cascade model of visual word recognition and reading aloud. Psychol Review 108:204–256CrossRefGoogle Scholar
  2. 2.
    Marshall JC, Newcombe F (1973) Patterns of paralexia: a psycholinguistic approach. J Psycholinguist Res 2:175–199CrossRefPubMedGoogle Scholar
  3. 3.
    Temple CM, Marshall JC (1983) A case study of developmental phonological dyslexia. Br J Psychol 74: 517–533PubMedGoogle Scholar
  4. 4.
    Regan D (1989) Human brain electrophysiology: evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New YorkGoogle Scholar
  5. 5.
    Zani A, Proverbio AM (eds) (2003) The cognitive electrophysiology of mind and brain. Academic Press/Elsevier, San DiegoGoogle Scholar
  6. 6.
    Salmelin R (2007) Clinical neurophysiology of language: the MEG approach. Clin Neurophysiol 118:237–54CrossRefPubMedGoogle Scholar
  7. 7.
    Kutas M (1987) Event-related brain potentials (ERPs) elicited during rapid serial visual presentation of congruous and incongruous sentences. EEG Clin Neurophysiol Suppl 40:406–411Google Scholar
  8. 8.
    Kutas M, Hillyard SA (1980) Reading senseless sentences: brain potentials reflect semantic incongruity. Science 11; 207:203–205CrossRefGoogle Scholar
  9. 9.
    Cohen L, Dehaene S (2004) Specialization within the ventral stream: the case for the visual word form area. Neuroimage 22:466–476CrossRefPubMedGoogle Scholar
  10. 10.
    Kronbichler M, Hutzler F, Wimmer H et al (2004) The visual word form area and the frequency with which words are encountered: evidence from a parametric fMRI study. Neuroimage 21:946–953CrossRefPubMedGoogle Scholar
  11. 11.
    McCandliss BD, Cohen L, Dehaene S (2003) The visual word form area: expertise for reading in the fusiform gyrus. Trends Cogn Sci 7:293–299CrossRefPubMedGoogle Scholar
  12. 12.
    Price CJ, Devlin JT (2004) The pro and cons of labelling a left occipitotemporal region: “the visual word form area”. Neuroimage 22:477–479CrossRefPubMedGoogle Scholar
  13. 13.
    Cohen L, Dehaene S, Naccache L et al (2000) The visual word form area. Spatial and temporal characterization of an initial stage of reading in normal subjects and posterior splitbrain patients. Brain 123:291–307CrossRefPubMedGoogle Scholar
  14. 14.
    Kuriki S, Takeuchi F, Hirata Y (1998) Neural processing of words in the human extrastriate visual cortex. Cogn Brain Res 6:193–203CrossRefGoogle Scholar
  15. 15.
    Nobre AC, Allison T, McCarthy G (1994) Word recognition in the human inferior temporal lobe. Nature 372:260–263CrossRefPubMedGoogle Scholar
  16. 16.
    Petersen SE, Fox PT, Posner M et al (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331:585–589CrossRefPubMedGoogle Scholar
  17. 17.
    Walla P, Endl W, Lindinger G et al (1999) Early occipito-parietal activity in a word recognition task: an EEG and MEG study. Clin Neurophysiol 10:1378–1387CrossRefGoogle Scholar
  18. 18.
    Mechelli A, Gorno-Tempini ML, Price CJ (2003) Neuroimaging studies of word and pseudoword reading: consistencies, inconsistencies and limitations. J Cogn Neurosci 15:260–271CrossRefPubMedGoogle Scholar
  19. 19.
    Bentin S, Mouchetant-Rostaing Y, Giard MH et al (1999) ERP manifestations of processing printed words at different psycholinguistic levels: time course and scalp distribution. J Cogn Neurosci 11:35–60CrossRefGoogle Scholar
  20. 20.
    Helenius P, Tarkiainen A, Cornelissen P et al (1999) Dissociation of normal feature analysis and deficient processing of letter-strings in dyslexic adults. Cereb Cortex 9:476–483CrossRefPubMedGoogle Scholar
  21. 21.
    Tarkiainen A, Helenius P, Hansen PC et al (1999) Dynamics of letter string perception in the human occipitotemporal cortex. Brain 122:2119–2132CrossRefPubMedGoogle Scholar
  22. 22.
    Proverbio AM, Čok B, Zani A (2002) ERP measures of language processing in bilinguals. J Cogn Neurosci 14:994–1017CrossRefPubMedGoogle Scholar
  23. 23.
    Proverbio AM, Vecchi L, Zani A (2004) From orthography to phonetics: ERP measures of grapheme-to-phoneme conversion mechanisms in reading. J Cogn Neurosci 16:301–317CrossRefPubMedGoogle Scholar
  24. 24.
    Salmelin R, Helenius P, Service E (2000) Neurophysiology of fluent and impaired reading: a magnetoencephalographic approach. J Clin Neurophysiol 17:163–174CrossRefPubMedGoogle Scholar
  25. 25.
    Shaywitz BA, Shaywitz SE, Pugh KR et al (2002) Disruption of posterior brain systems for reading in children with developmental dyslexia. Biol Psychiatry 52:101–110CrossRefPubMedGoogle Scholar
  26. 26.
    Proverbio AM, Wiedemann F, Adorni R et al (2007) Dissociating object familiarity from linguistic properties in mirror word reading. Behav Brain Funct 3:43CrossRefPubMedGoogle Scholar
  27. 27.
    Fiebach CJ, Friederici AD, Muller K, von Cramon DY (2002) fMRI evidence for dual routes to the mental lexicon in visual word recognition. J Cogn Neurosci 14:11–23CrossRefPubMedGoogle Scholar
  28. 28.
    Rodriguez-Fornells A, Schmitt BM, Kutas M, Munte TF (2002) Electrophysiological estimates of the time course of semantic and phonological encoding during listening and naming. Neuropsychologia 40:778–787CrossRefPubMedGoogle Scholar
  29. 29.
    Simos PG, Breier JI, Fletcher JM et al (2002) Brain mechanisms for reading words and pseudowords: an integrated approach. Cereb Cortex 12:297–305CrossRefPubMedGoogle Scholar
  30. 30.
    Grossi G, Coch D, Coffey-Corina S et al (2001) Phonological processing in visual rhyming: a developmental ERP study. J Cogn Neurosci 13:610–625CrossRefPubMedGoogle Scholar
  31. 31.
    Rugg MD, Barrett SE (1987) Event-related potentials and the interaction between orthographic and phonological information in a rhyme-judgment task. Brain Lang 32:336–361CrossRefPubMedGoogle Scholar
  32. 32.
    Binder JR, Frost JA, Hammeke TA et al (2000) Human temporal lobe activation by speech and nonspeech sounds. Cereb Cortex 10:512–528CrossRefPubMedGoogle Scholar
  33. 33.
    Proverbio AM, Zani A (2003) Time course of brain activation during graphemic/phonologic processing in reading: an ERP study. Brain Lang 87:412–420CrossRefPubMedGoogle Scholar
  34. 34.
    Proverbio AM, Zani A (2005) Developmental changes in the linguistic brain after puberty. Trends Cogn Sci 9:164–167CrossRefPubMedGoogle Scholar
  35. 35.
    Booth JR et al (2004) Development of brain mechanisms for processing orthographic and phonologic representations. J Cogn Neurosci 16:1234–1249CrossRefPubMedGoogle Scholar
  36. 36.
    Mody M, Studdert-Kennedy M, Brady S (1997) Speech perception deficits in poor readers: auditory processing or phonological coding? J Exp Child Psychol 64:199–231CrossRefPubMedGoogle Scholar
  37. 37.
    Serniclaes W, Sprenger-Charolles L, Carre R, Demonet JF (2001) Perceptual discrimination of speech sounds in developmental dyslexia. J Speech Lang Hear Res 44:384–399CrossRefPubMedGoogle Scholar
  38. 38.
    Näätänen R, Brattico E, Tervaniemi M (2003) Mismatch negativity (MMN): a probe to auditory cognition and perception in basic and clinical research. In: Zani A, Proverbio AM (eds) The cognitive electrophysiology of mind and brain. Academic Press, San DiegoGoogle Scholar
  39. 39.
    Kujala T, Naatanen R (2001) The mismatch negativity in evaluating central auditory dysfunction in dyslexia. Neurosci Biobehav Rev 25:535–543CrossRefPubMedGoogle Scholar
  40. 40.
    Leppanen PH, Pihko E, Eklund KM, Lyytinen H (1999) Cortical responses of infants with and without a genetic risk for dyslexia: II. Group effects. Neuroreport 10:969–973CrossRefPubMedGoogle Scholar
  41. 41.
    King JW, Kutas M (1998) Neural plasticity in the dynamics of human visual word recognition. Neurosci Lett 244:616–614CrossRefGoogle Scholar
  42. 42.
    Schendan HE, Ganis G, Kutas M (1998) Neurophysiological evidence for visual perceptual categorization of words and faces within 150 ms. Psychophysiology 35:240–251CrossRefPubMedGoogle Scholar
  43. 43.
    Assadollahi R, Pulvermüller F (2003) Early influences of word length and frequency: a group study using MEG. Neuroreport 14:1183–1187CrossRefPubMedGoogle Scholar
  44. 44.
    Pulvermüller F, Assadollahi R, Elbert T (2001) Neuromagnetic evidence for early semantic access in word recognition. Eur J Neurosci 13:201–205CrossRefPubMedGoogle Scholar
  45. 45.
    Johnson R Jr (1986) A triarchic model of P300 amplitude. Psychophysiology 23:367–384CrossRefPubMedGoogle Scholar
  46. 46.
    Donchin E (1987) The P300 as a metric for mental workload. EEG Clin Neurophysiol Suppl 39:338–343Google Scholar
  47. 47.
    Van Berkum JJA, Hagoort P, Brown CM (1999) Semantic integration in sentences and discourse: evidence from the N400. J Cogn Neurosci 11:657–671CrossRefPubMedGoogle Scholar
  48. 48.
    Hagoort P, Hald L, Bastiaansen M, Petersson KM (2004) Integration of word meaning and world knowledge in language comprehension. Science 304:438–441CrossRefPubMedGoogle Scholar
  49. 49.
    Friederici AD (2002) Towards a neural basis of auditory sentence processing. Trends Cogn Sci 6:78–84CrossRefPubMedGoogle Scholar
  50. 50.
    Friederici AD (1995)The time course of syntactic activation during language processing: a model based on neuropsychological and neurophysiological data. Brain Lang 50:259–281CrossRefPubMedGoogle Scholar
  51. 51.
    Münte TF, Heinze HJ, Mangun GR (1993) Dissociation of brain activity related to syntactic and semantic aspects of language. J Cogn Neurosci 5:335–344CrossRefGoogle Scholar
  52. 52.
    Osterhout L, Holcomb PJ (1992) Event-related brain potentials elicited by syntactic anomaly. J Memory Lang 31:785–806CrossRefGoogle Scholar
  53. 53.
    Hagoort P (2003) How the brain solves the binding problem for language: a neurocomputational model of syntactic processing. NeuroImage 20:18–29CrossRefGoogle Scholar
  54. 54.
    Federmeier KD, Kluender R, Kutas M (2002) Aligning linguistic and brain views on language comprehension, In: Zani A, Proverbio AM (eds) The cognitive electrophysiology of mind and brain. Academic Press, San DiegoGoogle Scholar
  55. 55.
    Hernandez A, Li P, MacWhinney B (2005) The emergence of competing modules in bilingualism. Trends Cogn Sci 9:220–225CrossRefPubMedGoogle Scholar
  56. 56.
    Proverbio AM, Adorni R, Zani A (2007) The organization of multiple languages in polyglots: interference or independence? J Neuroling 20:25–49CrossRefGoogle Scholar
  57. 57.
    Illes J, Francis WS, Desmond JE et al (1999) Convergent cortical representation of semantic processing in bilinguals. Brain Lang 70:347–363CrossRefPubMedGoogle Scholar
  58. 58.
    Paradis M (1996) Selective deficit in one language is not a demonstration of different anatomical representation. Comments on Gomez-Tortosa et al (1995). Brain Lang 54:170–173CrossRefPubMedGoogle Scholar
  59. 59.
    Perani D, Abutalebi J (2005) The neural basis of first and second language processing. Current Opin Neurobiol 15:202–206CrossRefGoogle Scholar
  60. 60.
    Roux FE, Lubrano V, Lauwers-Cances V et al (2004) Intra-operative mapping of cortical areas involved in reading in mono-and bilingual patients. Brain 127:1796–1810CrossRefPubMedGoogle Scholar
  61. 61.
    Dehaene S, Dupoux E, Mehler J et al (1997) Anatomical variability in the cortical representation of first and second language. Neuroreport 8:3809–3815CrossRefPubMedGoogle Scholar
  62. 62.
    Lucas TH, McKhann GM, Ojemann GA (2004) Functional separation of languages in the bilingual brain: a comparison of electrical stimulation language mapping in 25 bilingual patients and 117 monolingual control patients. J Neurosurg 101:449–457CrossRefPubMedGoogle Scholar
  63. 63.
    Fabbro F, Gran L, Basso G, Bava A (1990) Cerebral lateralization in simultaneous interpretation. Brain Lang 39:69–89CrossRefPubMedGoogle Scholar
  64. 64.
    Proverbio AM, Adorni R, Del Zotto M, Zani A (2005) The effect of age of acquisition and proficiency on language-related brain activation in interpreters: an ERP study. Psychophysiology 42(S1):S7CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2010

Authors and Affiliations

  • Alice Mado Proverbio
    • 1
  • Alberto Zani
    • 2
  1. 1.Department of PsychologyUniversity of Milano-BicoccaMilanItaly
  2. 2.CNR — Institute of Molecular Bioimaging and PhysiologySegrate (MI)Italy

Personalised recommendations