Skip to main content

Alberi di supporto e arborescenze

  • Chapter
Ottimizzazione Combinatoria

Part of the book series: UNITEXT ((UNITEXTMAT))

  • 529 Accesses

Riassunto

Si consideri una compagnia telefonica che vuole affittare un sottoinsieme dei suoi esistenti, ognuno dei quali connette due città. I cavi affittati dovrebbero essere sufficienti a connettere tutte le città e dovrebbero essere il più economici possibile. È naturale in questo caso rappresentare la rete telefonica con un grafo: i vertici rappresentano le città e gli archi i cavi. Per il Teorema 2.4 i sottografi connessi di supporto di cardinalità minima sono i suoi alberi di supporto. Cerchiamo dunque un albero di supporto di peso minimo, in cui diciamo che il sottografo T di un grafo G con pesi c: E(G) → ℝ ha peso c(E(T)) =e∈E(T)c(e). Indicheremo con c(e) il costo dell’arco e.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Riferimenti bibliografici

Letteratura generale

  • Ahuja, R.K., Magnanti, T.L., Orlin, J.B. [1993]: Network Flows. Prentice-Hall, Englewood Cliffs, Chapter 13

    Google Scholar 

  • Balakrishnan, V.K. [1995]: Network Optimization. Chapman and Hall, London, Chapter 1

    Google Scholar 

  • Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. [2001]: Introduction to Algorithms. Second Edition. MIT Press, Cambridge, Chapter 23

    MATH  Google Scholar 

  • Gondran, M., Minoux, M. [1984]: Graphs and Algorithms. Wiley, Chichester, Chapter 4

    MATH  Google Scholar 

  • Magnanti, T.L., Wolsey, L.A. [1995]: Optimal trees. In: Handbooks in Operations Research and Management Science; Volume 7: Network Models (M.O. Ball, T.L. Magnanti, C.L. Monma, G.L. Nemhauser, eds.), Elsevier, Amsterdam, pp. 503–616

    Google Scholar 

  • Schrijver, A. [2003]: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin, Chapters 50-53

    Google Scholar 

  • Tarjan, R.E. [1983]: Data Structures and Network Algorithms. SIAM, Philadelphia, Chapter 6

    Book  Google Scholar 

  • Wu, B.Y., Chao, K.-M. [2004]: Spanning Trees and Optimization Problems. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

Riferimenti citati

  • Bock, F.C. [1971]: An algorithm to construct a minimum directed spanning tree in a directed network. In: Avi-Itzhak, B. (Ed.): Developments in Operations Research, Volume I. Gordon and Breach, New York, pp. 29–44

    Google Scholar 

  • Borůvka, O. [1926a]: O jistém problému minimálním. Práca Moravské Prírodovedecké Spolnecnosti 3, 37–58

    Google Scholar 

  • Borůvka, O. [1926b]: Príspevek k resení otázky ekonomické stavby. Elektrovodních sítí. Elektrotechnicky Obzor 15, 153–154

    Google Scholar 

  • Cayley, A. [1889]: A theorem on trees. Quarterly Journal on Mathematics 23, 376–378

    Google Scholar 

  • Chazelle, B. [2000]: A minimum spanning tree algorithm with inverse-Ackermann type complexity. Journal of the ACM 47, 1028–1047

    Article  MathSciNet  MATH  Google Scholar 

  • Cheriton, D., Tarjan, R.E. [1976]: Finding minimum spanning trees. SIAM Journal on Computing 5, 724–742

    Article  MathSciNet  MATH  Google Scholar 

  • Chu, Y., Liu, T. [1965]: On the shortest arborescence of a directed graph. Scientia Sinica 4, 1396–1400; Mathematical Review 33, # 1245

    Google Scholar 

  • Diestel, R. [1997]: Graph Theory. Springer, New York

    MATH  Google Scholar 

  • Dijkstra, E.W. [1959]: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271

    Article  MathSciNet  MATH  Google Scholar 

  • Dixon, B., Rauch, M., Tarjan, R.E. [1992]: Verification and sensitivity analysis of minimum spanning trees in linear time. SIAM Journal on Computing 21, 1184–1192

    Article  MathSciNet  MATH  Google Scholar 

  • Edmonds, J. [1967]: Optimum branchings. Journal of Research of the National Bureau of Standards B 71, 233–240

    MathSciNet  MATH  Google Scholar 

  • Edmonds, J. [1970]: Submodular functions, matroids and certain polyhedra. In: Combinatorial Structures and Their Applications; Proceedings of the Calgary International Conference on Combinatorial Structures and Their Applications 1969 (R. Guy, H. Hanani, N. Sauer, J. Schönheim, eds.), Gordon and Breach, New York, pp. 69–87

    Google Scholar 

  • Edmonds, J. [1973]: Edge-disjoint branchings. In: Combinatorial Algorithms (R. Rustin, ed.), Algorithmic Press, New York, pp. 91–96

    Google Scholar 

  • Fortune, S. [1987]: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174

    Article  MathSciNet  MATH  Google Scholar 

  • Frank, A. [1978]: On disjoint trees and arborescences. In: Algebraic Methods in Graph Theory; Colloquia Mathematica; Soc. J. Bolyai 25 (L. Lovász, V.T. Sós, eds.), North-Holland, Amsterdam, pp. 159–169

    Google Scholar 

  • Frank, A. [1979]: Covering branchings. Acta Scientiarum Mathematicarum (Szeged) 41, 77–82

    MATH  Google Scholar 

  • Fredman, M.L., Tarjan, R.E. [1987]: Fibonacci heaps and their uses in improved network optimization problems. Journal of the ACM 34, 596–615

    Article  MathSciNet  Google Scholar 

  • Fredman, M.L., Willard, D.E. [1994]: Trans-dichotomous algorithms for minimum spanning trees and shortest paths. Journal of Computer and System Sciences 48, 533–551

    Article  MathSciNet  MATH  Google Scholar 

  • Fulkerson, D.R. [1974]: Packing rooted directed cuts in a weighted directed graph. Mathematical Programming 6, 1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Gabow, H.N. [1995]: A matroid approach to finding edge connectivity and packing arborescences. Journal of Computer and System Sciences 50, 259–273

    Article  MathSciNet  MATH  Google Scholar 

  • Gabow, H.N., Galil, Z., Spencer, T. [1989]: Efficient implementation of graph algorithms using contraction. Journal of the ACM 36, 540–572

    Article  MathSciNet  Google Scholar 

  • Gabow, H.N., Galil, Z., Spencer, T., Tarjan, R.E. [1986]: Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica 6, 109–122

    Article  MathSciNet  MATH  Google Scholar 

  • Gabow, H.N., Manu, K.S. [1998]: Packing algorithms for arborescences (and spanning trees) in capacitated graphs. Mathematical Programming B 82, 83–109

    MathSciNet  MATH  Google Scholar 

  • Jarník, V. [1930]: O jistém problému minimálním. Práca Moravské Prírodovedecké Spolecnosti 6, 57–63

    Google Scholar 

  • Karger, D., Klein, P.N., Tarjan, R.E. [1995]: A randomized linear-time algorithm to find minimum spanning trees. Journal of the ACM 42, 321–328

    Article  MathSciNet  MATH  Google Scholar 

  • Karp, R.M. [1972]: A simple derivation of Edmonds’ algorithm for optimum branchings. Networks 1, 265–272

    Article  MathSciNet  MATH  Google Scholar 

  • King, V. [1997]: A simpler minimum spanning tree verification algorithm. Algorithmica∼ 18, 263–270

    Article  MathSciNet  MATH  Google Scholar 

  • Knuth, D.E. [1992]: Axioms and hulls; LNCS 606. Springer, Berlin

    Google Scholar 

  • Korte, B., Nešetřil, J. [2001]: Vojtech Jarník’s work in combinatorial optimization. Discrete Mathematics 235, 1–17

    Article  MathSciNet  MATH  Google Scholar 

  • Kruskal, J.B. [1956]: On the shortest spanning subtree of a graph and the travelling salesman problem. Proceedings of the AMS 7, 48–50

    Article  MathSciNet  MATH  Google Scholar 

  • Lovász, L. [1976]: On two minimax theorems in graph. Journal of Combinatorial Theory B 21, 96–103

    Article  MATH  Google Scholar 

  • Nash-Williams, C.S.J.A. [1961]: Edge-disjoint spanning trees of finite graphs. Journal of the London Mathematical Society 36, 445–450

    Article  MathSciNet  MATH  Google Scholar 

  • Nash-Williams, C.S.J.A. [1964]: Decompositions of finite graphs into forests. Journal of the London Mathematical Society 39, 12

    Article  MathSciNet  MATH  Google Scholar 

  • Nešetřil, J., Milková, E., and Nešetřilová, H. [2001]: Otakar Borůvka on minimum spanning tree problem. Translation of both the 1926 papers, comments, history. Discrete Mathematics 233, 3–36

    Article  MathSciNet  MATH  Google Scholar 

  • Prim, R.C. [1957]: Shortest connection networks and some generalizations. Bell System Technical Journal 36, 1389–1401

    Google Scholar 

  • Prüfer, H. [1918]: Neuer Beweis eines Satzes über Permutationen. Arch. Math. Phys. 27, 742–744

    Google Scholar 

  • Shamos, M.I., Hoey, D. [1975]: Closest-point problems. Proceedings of the 16th Annual IEEE Symposium on Foundations of Computer Science, 151–162

    Google Scholar 

  • Sylvester, J.J. [1857]: On the change of systems of independent variables. Quarterly Journal of Mathematics 1, 42–56

    Google Scholar 

  • Tarjan, R.E. [1975]: Efficiency of a good but not linear set union algorithm. Journal of the ACM 22, 215–225

    Article  MathSciNet  MATH  Google Scholar 

  • Tutte, W.T. [1961]: On the problem of decomposing a graph into n connected factor. Journal of the London Mathematical Society 36, 221–230

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou, H., Shenoy, N., Nicholls, W. [2002]: Efficient minimum spanning tree construction without Delaunay triangulation. Information Processing Letters 81, 271–276

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Italia

About this chapter

Cite this chapter

Korte, B., Vygen, J. (2011). Alberi di supporto e arborescenze. In: Ottimizzazione Combinatoria. UNITEXT(). Springer, Milano. https://doi.org/10.1007/978-88-470-1523-4_6

Download citation

Publish with us

Policies and ethics