Skip to main content

Impiego dei mezzi di contrasto intravascolari

  • Chapter
Imaging RM della prostata

Riassunto

L’angiogenesi è il processo di crescita di nuovi vasi intorno a un tessuto. La formazione di un neosubstrato vascolare assume un significato fisiologico nei processi di embriogenesi, di formazione di un corpo luteo e in molti altri che presuppongono la crescita di un neotessuto. La stessa assume un ruolo critico nella patogenesi di molte malattie, le più importanti delle quali sono senza dubbio i tumori solidi. Per quanto riguarda il cancro prostatico, il processo di angiogenesi è il principale responsabile della crescita rapida del neotessuto maligno e dell’acquisizione di capacità metastatiche del cancro. Con lo sviluppo contemporaneo di nuove strategie e di principi terapeutici che intervengano in modo specifico sul processo di angiogenesi, la possibilità di individuare e quantificare in modo accurato la crescita di neovasi passa dalla realtà dei laboratori alla pratica clinica routinaria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Folkman J (1990) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–6

    Article  CAS  PubMed  Google Scholar 

  2. Jain RK, Gerlowski LE (1986) Extravascular transport in normal and tumor tissues. Crit Rev Oncol Hematol 5:115–170

    Article  CAS  PubMed  Google Scholar 

  3. Weidner N (1995) Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol 147:9–19

    CAS  PubMed  Google Scholar 

  4. Knopp MV, von Tengg-Koblingk H, Floemer F, Schoenberg SO (1999) Contrast agents for MRA: future directions. J Magn Reson Imaging 10:314–316

    Article  CAS  PubMed  Google Scholar 

  5. Saeed M, Wendland MF, Higgins CB (2000) Blood pool contrast agents for cardiovascular imaging. J Magn Reson Imaging 12:890–898

    Article  CAS  PubMed  Google Scholar 

  6. Aime S, Botta M, Fasano M et al (1996) Gd(III) complexes as contrast agents for magnetic resonance imaging: a proton relaxation enhancement study of the interaction with human serum albumin. J Biol Inorg Chem 1:312–319

    Article  CAS  Google Scholar 

  7. Farooki A, Narra V, Brown J (2004) a. Curr Opin Investig Drugs 5:967–976

    CAS  PubMed  Google Scholar 

  8. Anzidei M, Catalano C, Passariello R et al (2009) Gadofosveset-enhanced MR angiography of carotid arteries: does steady-state imaging improve accuracy of first-pass imaging? Comparison with selective digital subtraction angiography. Radiology 251(2):457–466

    Article  PubMed  Google Scholar 

  9. Caravan P, Cloutier NJ, Greenfield MT et al (2002) The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. J Am Chem Soc 124:3152–3162

    Article  CAS  PubMed  Google Scholar 

  10. Rohrer M, Bauer H, Mintorovitch J et al (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40: 715–724

    Article  PubMed  Google Scholar 

  11. Grist TM, Korosec FR, Peters DC et al (1998) Steady-state and dynamic MR angiography with MS-325: initial experience in humans. Radiology 207:539–544

    CAS  PubMed  Google Scholar 

  12. Preda A, Novikov V, Möglich M et al (2004) MRI monitoring of Avastin antiangiogenesis therapy using B22956/1, a new blood pool contrast agent, in an experimental model of human cancer. J Magn Reson Imaging 20:865–873

    Article  PubMed  Google Scholar 

  13. Stefanou D, Batistatou A, Kamina S et al (2004) Expression of vascular endothelial growth factor (VEGF) and association with microvessel density in benign prostatic hyperplasia and prostate cancer. In Vivo 18(2):155–160

    CAS  PubMed  Google Scholar 

  14. Sinha AA, Quast BJ, Reddy PK et al (2004) Microvessel density as a molecular marker for identifying high-grade prostatic intraepithelial neoplasia precursors to prostate cancer. Exp Mol Pathol 77(2):153–159

    Article  CAS  PubMed  Google Scholar 

  15. Bono AV, Celato N, Cova V et al (2002) Microvessel density in prostate carcinoma. Prostate Cancer Prostatic Dis 5(2): 123–127

    Article  CAS  PubMed  Google Scholar 

  16. van Niekerk CG, van der Laak JA, Börger ME et al (2009) Computerized whole slide quantification shows increased microvascular density in pT2 prostate cancer as compared to normal prostate tissue. Prostate 69(1):62–69

    Article  PubMed  Google Scholar 

  17. Cheng HL, Wallis C, Shou Z, Farhat WA (2007) Quantifying angiogenesis in VEGF-enhanced tissue-engineered bladder constructs by dynamic contrast-enhanced MRI using contrast agents of different molecular weights. J Magn Reson Imaging 25(1):137–145

    Article  CAS  PubMed  Google Scholar 

  18. Roberts T, Schwickert H, Brasch R (1995) Quantitative estimation of contrast agent tissue accumulation: potential errors, Soc Magn Reson Proc, Nice, France, p 1129

    Google Scholar 

  19. Kaiser W, Reisner M (1992) False positive cases in dynamic MR mammography. RSNA, Chicago, p 934

    Google Scholar 

  20. Ostrowitzki S, Fick J, Roberts TP et al (1998) Comparison of gadopentetate dimeglumine and albumin-(Gd-DTPA)30 for microvessel characterization in an intracranial glioma model. J Magn Reson Imaging 8:799–806

    Article  CAS  PubMed  Google Scholar 

  21. Daldrup H, Shames D, Wendland M et al (1998) Correlation of dynamic contrast-enhanced magnetic resonance imaging with histologic tumor grade: comparison of macromolecular and small molecular contrast media. Am J Roentgen 171:941–949

    CAS  Google Scholar 

  22. Ocak I, Bernardo M, Metzger G et al (2007) Dynamic contrast-enhanced MRI of prostate cancer at 3 T: a study of pharmacokinetic parameters. AJR Am J Roentgenol 189(4): 849

    Article  PubMed  Google Scholar 

  23. Noworolski SM, Vigneron DB, Chen AP, Kurhanewicz J (2008) Dynamic contrast-enhanced MRI and MR diffusion imaging to distinguish between glandular and stromal prostatic tissues. Magn Reson Imaging 26:1071–1080. Epub 2008 May 27

    Article  PubMed  Google Scholar 

  24. Zakian KL, Shukla-Dave A, Ackerstaff E (2008) 1H magnetic resonance spectroscopy of prostate cancer: biomarkers for tumor characterization. Cancer Biomark 4(4–5): 263–276

    CAS  PubMed  Google Scholar 

  25. Vilanova JC, Barceló J (2007) Prostate cancer detection: magnetic resonance (MR) spectroscopic imaging. Abdom Imaging 32(2):253–261

    Article  PubMed  Google Scholar 

  26. Taouli B (2006) MR spectroscopic imaging for evaluation of prostate cancer. J Radiol 87(2 Pt 2):222–227

    Article  CAS  PubMed  Google Scholar 

  27. Huzjan R, Sala E, Hricak H (2005) Magnetic resonance imaging and magnetic resonance spectroscopic imaging of prostate cancer. Nat Clin Pract Urol 2(9):434–442

    Article  CAS  PubMed  Google Scholar 

  28. Vogel-Claussen J, Gimi B, Artemov D, Bhujwalla ZM (2007) Diffusion-weighted and macromolecular contrast enhanced MRI of tumor response to antivascular therapy with ZD6126. Cancer Biol Ther 6(9):1469–1475

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Italia

About this chapter

Cite this chapter

Osimani, M., Ricci, P., Panebianco, V. (2010). Impiego dei mezzi di contrasto intravascolari. In: Passariello, R., Panebianco, V., Di Silverio, F., Sciarra, A. (eds) Imaging RM della prostata. Springer, Milano. https://doi.org/10.1007/978-88-470-1516-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1516-6_28

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1515-9

  • Online ISBN: 978-88-470-1516-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics