Statistical Properties of Fluctuations: A Method to Check Market Behavior

  • Prasanta K. Panigrahi
  • Sayantan Ghosh
  • P. Manimaran
  • Dilip P. Ahalpara
Part of the New Economic Windows book series (NEW)


We analyze the Bombay Stock Exchange (BSE) price index over the period of last 12 years. Keeping in mind the large fluctuations in last few years, we carefully find out the transient, non-statistical and locally structured variations. For that purpose, we make use of Daubechies wavelet and characterize the fractal behavior of the returns using a recently developed wavelet based fluctuation analysis method. the returns show a fat-tail distribution as also weak non-statistical behavior. We have also carried out continuous wavelet as well as Fourier power spectral analysis to characterize the periodic nature and correlation properties of the time series.


Discrete Wavelet Transform Continuous Wavelet Transform Detrended Fluctuation Analysis Morlet Wavelet Daubechies Wavelet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Plerou V et al (2000), Physica A 279:443CrossRefGoogle Scholar
  2. 2.
    Bachelier L (1900) Ann. Sci. École Norm. Sup. 3:21Google Scholar
  3. 3.
    Pareto V (1897) Cours d’Économie Politique Lausanne, ParisGoogle Scholar
  4. 4.
    Lévy P (1937) Théorie de l’Addition des Variables Alé atoires, Gauthier-Villars, ParisGoogle Scholar
  5. 5.
    Mandelbrot B B (1963) J. Bus. 36:394419CrossRefGoogle Scholar
  6. 6.
    Mantegna, R N, Stanley H E (2000), Introduction to Econophysics: Correlations and Complexity in Finance, Cambridge University Press, CambridgeGoogle Scholar
  7. 7.
    Bouchaud J P, Potters M (2000) Theory of Financial Risk, Cambridge University Press, CambridgeGoogle Scholar
  8. 8.
    Farmer J D (1999) Comput. Sci. Eng. 1:26CrossRefGoogle Scholar
  9. 9.
    Kondor I, Kértesz (eds.) (2000) Econophysics: An Emerging Science, Kluwer, DordrechtGoogle Scholar
  10. 10.
    Mantegna R N, (ed.) (1999) Proceedings of the International Workshop on Econophysics and Statistical Finance, Physica A (special issue) 269:1Google Scholar
  11. 11.
    Bouchaud J P, Alström P, Lauritsen K B (eds.), (2000) Application of Physics in Financial Analysis, Int. J. Theor. Appl. Finance (special issue) 3 Google Scholar
  12. 12.
    Takayasu H (ed.) (2002), The Application of Econophysics: Proceedings of the Second Nikkei Econophysics Symposium, SpringerGoogle Scholar
  13. 13.
    Mandelbrot B B (1999), The Fractal Geometry of Nature Freeman, San FranciscoGoogle Scholar
  14. 14.
    Daubechies I (1992) Ten lectures on wavelets SIAM, PhiladelphiaCrossRefGoogle Scholar
  15. 15.
    Mallat S (1999) A Wavelet Tour of Signal Processing Academic PressGoogle Scholar
  16. 16.
    Burrus C S, Gopinath R A, and Guo H (1998) Introduction to Wavelets and Wavelt Transforms Prentice Hall, New JerseyGoogle Scholar
  17. 17.
    Manimaran P, Panigrahi P K, and Parikh J C (2005), Phys. Rev. E 72:046120CrossRefGoogle Scholar
  18. 18.
    Manimaran P, Lakshmi P A, Panigrahi P K (2006), J. Phys. A 39:L599CrossRefGoogle Scholar
  19. 19.
    O’swiecimka P, Kwapién, Drozdz (2006) Phys. Rev. A. 74:016103Google Scholar
  20. 20.
    Manimaran P, Panigrahi P K, and Parikh J C (2008) Physica A 387:5810CrossRefGoogle Scholar
  21. 21.
    Manimaran P, Panigrahi P K, and Parikh J C (2009) Physica A 388:2306CrossRefGoogle Scholar
  22. 22.
    Hu K, Ivanov P Ch, Chen Z, Carpena P, and Stanley H E (2001) Phys.Rev. E 64:11114CrossRefGoogle Scholar
  23. 23.
    Gopikrishnan et al (1999) Phys. Rev. E 60:5305CrossRefGoogle Scholar
  24. 24.
    Plerou V et al (1999) Phys. Rev. E 60:6519CrossRefGoogle Scholar
  25. 25.
    Chen Z, Ivanov P Ch, Hu K, and Stanley H E (2002) Phys. Rev. E 65:041107CrossRefGoogle Scholar
  26. 26.
    Matia K, Ashkenazy Y, and H. E. Stanley, (2003) Europhys. Lett. 61:422CrossRefGoogle Scholar
  27. 27.
    Hwa R C et al (2005) Phys. Rev. E. 72:066308CrossRefGoogle Scholar
  28. 28.
    Ohashi K, Amaral L A N, Natelson B H, Yamamoto Y (2003) Phys. Rev. E. 68:065204CrossRefGoogle Scholar
  29. 29.
    Xu L et al (2005) Phys. Rev. E. 71:051101CrossRefGoogle Scholar
  30. 30.
    Brodu N, eprint:nlin.CD/0511041Google Scholar
  31. 31.
    Gu G F, Zhou W X (2006) Phys. Rev. E 74:061104CrossRefGoogle Scholar
  32. 32.
    Mohaved M S, Hermanis E (2008) Physica A 387:915CrossRefGoogle Scholar
  33. 34.
    Farge M, (1992) Annu. Rev. Fluid Mech. 24:395CrossRefGoogle Scholar
  34. 35.
    Stuzik Z R, (2001) Physica A 296:307CrossRefGoogle Scholar
  35. 36.
    Bartolozzi M et al (2005) Physica A 350:451CrossRefGoogle Scholar
  36. 37.
    Bartolozzi M (2007) Eur. Phys. J. B 57:337CrossRefGoogle Scholar
  37. 38.
    Simonsen I, Hansen A, and Nes O-M, Phys. Rev. E 58 (1998) 2779CrossRefGoogle Scholar
  38. 39.
    Connor J and Rossiter R (2005), Studies in Nonlinear Dynamics and Econometrics 9:1Google Scholar
  39. 40.
    Ahalpara D P et al (2008) Pramana-J. Phys. 71:459CrossRefGoogle Scholar
  40. 41.
    Torrence C and Compo G P (1998) Bull. Amer. Meteorol. Soc. 79:61CrossRefGoogle Scholar
  41. 42.
    Goupillaud P, Grossman A, and Morlet J (1984) Geoexploration 23:85–102CrossRefGoogle Scholar
  42. 43.
    Hurst H E (1951) Trans. Am. Soc. Civ. Eng. 116:770Google Scholar
  43. 44.
    Feder J (1988) Fractals Plenum Press, New YorkGoogle Scholar
  44. 45.
    Arneodo A et al (1988) Phys. Rev. Lett. 61:2284; Muzy J F et al (1993) Phys. Rev. E 47:875CrossRefGoogle Scholar
  45. 46.
    Peng C K, et al (1994) Phys. Rev. E 49:1685CrossRefGoogle Scholar
  46. 47.
    Kantelhardt J W, et al (2003) Physica A 330:240CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2010

Authors and Affiliations

  • Prasanta K. Panigrahi
    • 1
    • 2
  • Sayantan Ghosh
    • 3
  • P. Manimaran
    • 4
  • Dilip P. Ahalpara
    • 5
  1. 1.Indian Institute of Science Education and Research (Kolkata)Salt Lake City, KolkataIndia
  2. 2.Physical Research LaboratoryAhmedabadIndia
  3. 3.The Insitute of Mathematical SciencesChennaiIndia
  4. 4.Centre for Mathematical SciencesC. R. Rao Advanced Institute of Mathematics, Statistics and Computer ScienceHyderabadIndia
  5. 5.The Institute for Plasma ResearchGandhinagarIndia

Personalised recommendations