Advertisement

Novel Characterization Techniques of Microballoons

  • Paulo Fernandes
  • Melanie Pretzl
  • Andreas Fery
  • George Tzvetkov
  • Rainer Fink

Abstract

With the development of innovative, more complex and ever smaller micro-systems there is a growing need to develop novel characterization techniques that can provide more detailed information about their properties. Fundamental aspects of these techniques are high resolution, measurements in liquid environment, force detection and chemical sensitivity on individual microballoons. In this chapter three characterization techniques based on AFM, RICM and STXM are presented and illustrated with some basic results obtained on PVA-based microballoons.

Keywords

Adhesion Force Force Spectroscopy Microcontact Printing Shallow Spherical Shell Fresnel Zone Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ade H, Zhang X, Cameron S, Costello C, Kirz J and Williams S (1992) Science 258:972CrossRefGoogle Scholar
  2. 2.
    Ade H and Hsiao B (1993) X-ray Linear Dichroism Microscopy. Science 262:1427CrossRefGoogle Scholar
  3. 3.
    Ade H and Hitchcock AP (2008) NEXAFS microscopy and resonant scattering: Composition and orientation probed in real and reciprocal space. Polymer 49:643CrossRefGoogle Scholar
  4. 4.
    Binnig G, Quate CF and Gerber C (1986) Atomic Force Microscopy. Phys Rev Lett 56:930CrossRefGoogle Scholar
  5. 5.
    Booth BL (1993) Polymers for electronic and photonic applications. In: Wong CP (ed). Academic Press, Boston, pp. 549–597Google Scholar
  6. 6.
    Butt HJ (1991) Measuring Electrostatic, Van der Waals, and Hydration Forces in Electrolyte-Solutions with an Atomic Force Microscope. Biophys J 60:1428Google Scholar
  7. 7.
    Déjugnat C, Köhler K, Dubois M, Sukhorukov GB, Möhwald H, Zemb T and Guttmann P (2007) Membrane densification of heated polyelectrolyte multilayer capsules characterized by soft X-ray microscopy. Adv Mater 19:1331CrossRefGoogle Scholar
  8. 8.
    Delorme N and Fery A (2006) Direct method to study membrane rigidity of small vesicles based on atomic force microscope force spectroscopy. Phys Rev E 74:030901CrossRefGoogle Scholar
  9. 9.
    Delorme N, Dubois M, Garnier S, Laschewsky A, Weinkamer R, Zemb T and Fery A (2006) Surface immobilization and mechanical properties of catanionic hollow faceted poGoogle Scholar
  10. 10.
    Dubreuil F, Elsner N and Fery A (2003) Elastic properties of polyelectrolyte capsules studied by atomic force microscopy and RICM. Europhys J E 12:215–221Google Scholar
  11. 11.
    Dubreuil F, Shchukin DG, Sukhorukov GB and Fery A (2004) Increasing Stiffness and Toughness of Polyelectrolyte-capsules by YF3-nanoparticle modifying: an AFM study. Macromol rapid Comm 25:1078CrossRefGoogle Scholar
  12. 12.
    Ducker WA, Senden TJ and Pashley RM (1991) Direct Measurement of Colloidal Forces Using an Atomic Force Microscope. Nature 353:239CrossRefGoogle Scholar
  13. 13.
    Elsner N, Dubreuil F and Fery A (2004) Tuning of microcapsule adhesion by varying the capsule-wall thickness. Phys Rev E 69:031802CrossRefGoogle Scholar
  14. 14.
    Elsner N, Dubreuil F, Weinkamer R, Fischer F.D., Wasicek F and Fery A (2006) Mechanical properties of freestanding polyelectrolyte capsules. Prog Coll Polym Sci 132:117–132CrossRefGoogle Scholar
  15. 15.
    Fernandes P, Tzvetkov G, Fink R, Paradossi G and Fery A. (2008) Langmuir 24(23): 13677CrossRefGoogle Scholar
  16. 16.
    Fery A, Dubreuil F and Möhwald H (2004) Mechanics of artificial microcapsules. New Journal of Physics 6:18CrossRefGoogle Scholar
  17. 17.
    Fery A and Weinkamer R (2007) Mechanical properties of micro-and nanocapsules: Single-capsule measurements. Polymer 48:7221–7235CrossRefGoogle Scholar
  18. 18.
    Hammond PT and Whitesides GM (1995) Formation of Polymer Microstructures by Selective Deposition of Polyion Multilayers Using Patterned Self-Assembled Monolayers as a Template. Macromolecules 28(22):7569–7571CrossRefGoogle Scholar
  19. 19.
    Heuvingh J, Zappa M and Fery A (2005) Salt induced softening transition of polyelectrolyte multilayer capsules. Langmuir 21:3165CrossRefGoogle Scholar
  20. 20.
    Howell SW, Inerowicz HD, Regnier FE and Reifenberger R (2003) Patterned protein microarrays for bacterial detection. Langmuir 19(2):436–439CrossRefGoogle Scholar
  21. 21.
    Hutter JL and Bechhoefer J (1993) Calibration of Atomic-Force Microscope Tips. Rev Sci Instrum 64:1868CrossRefGoogle Scholar
  22. 22.
    Kam L and Boxer SG (2001) Cell adhesion to protein-micropatterned-supported lipid bilayer membranes. Journal of Biomedical Materials Research 55(4):487–495CrossRefGoogle Scholar
  23. 23.
    Kane RS, Takayama S, Ostuni E, Ingber DE and Whitesides GM (1999) Patterning proteins and cells using soft lithography. Biomaterials 20(23–24):2363–2376CrossRefGoogle Scholar
  24. 24.
    Kirz J and Rarback H (1985) Rev Sci Instrum 56:1CrossRefGoogle Scholar
  25. 25.
    Kohler K, Déjugnat C, Dubois M, Zemb T, Sukhorukov GB, Guttmann P and Möhwald H (2007) J Phys Chem B 111:8388CrossRefGoogle Scholar
  26. 26.
    Koiter WT (1963) A spherical shell under point loads at its poles (ed). Macmillan, New York, pp. 155–170Google Scholar
  27. 27.
    Krol S, Nolte M, Mazza D, Magrassi R, Diaspro A, Gliozzi A and Fery A (2005) Encapsulated Living Cells on Microstructured Surfaces Langmuir 21:705Google Scholar
  28. 28.
    Kumar A and Whitesides GM (1994) Patterned Condensation Figures as Optical Diffraction Gratings. Science 263:60–62CrossRefGoogle Scholar
  29. 29.
    Lu C, Möhwald H and Fery A (2007) A lithography-free method for directed colloidal crystal assembly based on wrinkling. Soft Matter 3:1530–1536CrossRefGoogle Scholar
  30. 30.
    Müller R, Köhler K, Weinkamer R, Sukhorukov GB and Fery A (2005) Melting of PDADMAC/PSS capsules investigated with AFM Force Spectroscopy. Macromolecules 38:9766–9771 lyhedrons. J Phys Chem B 110:1752Google Scholar
  31. 31.
    Nolte M and Fery A (2004) Coupling of individual polyelectrolyte capsules onto patterned substrates. Langmuir 20(8):2995–2998CrossRefGoogle Scholar
  32. 32.
    Nolte M and Fery A (2004) Microstructuring of polyelectrolyte coated surfaces for directing capsule adhesion. IEEE Transactions on Nanobioscience 3(1):22–27CrossRefGoogle Scholar
  33. 33.
    Pretzl M, Schweikart A, Hanske C, Chiche A, Zettl U, Horn A, Böker A and Fery A (2008) A lithography-free pathway for chemical microstructuring of macromolecules from aqueous solution based on wrinkling. Langmuir 24:12748–12753CrossRefGoogle Scholar
  34. 34.
    Raabe J, Tzvetkov G, Flechsig U, Boge M, Jaggi A, Sarafimov B, Quitmann C, Vernooij MGC, Huthwelker T, Ade H, Kilcoyne D, Tyliszczak T and Fink R (2008) PolLux: A new Beamline for Soft X-Ray Spectromicroscopy at the SLS. Rev Sci Instrum 79:113704CrossRefGoogle Scholar
  35. 35.
    Raedler J and Sackmann E (1992) On the measurements of weak repulsive and frictional colloidal forces by reflection interference contrast microscopy. Langmuir 8:848–853CrossRefGoogle Scholar
  36. 36.
    Raichur A, Vorös J, Textor M and Fery A (2006) Adhesion of Polyelectrolyte Multilayer Capsules through specific biotin-streptavidine interactions. Biomacromolecules 7:2331–2336CrossRefGoogle Scholar
  37. 37.
    Reissner E (1946) Stresses and small displacements of shallow spherical shells. J Mat Phys 25:80MATHMathSciNetGoogle Scholar
  38. 38.
    Reissner E (1946) Stresses and Small Displacements of Shallow Spherical Shells, 2n. Journal of Mathematics and Physics 25:279–300Google Scholar
  39. 39.
    Sader JE (1998) Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J Appl Phys 84:64–76CrossRefGoogle Scholar
  40. 40.
    Saravia V, Nolte M, Küpcü S, Pum D, Fery A, Sleytr UB and Toca-Herrera J (2007) Bacterial protein patterning by micro-contact printing of PLL-g-PEG. J Biotechnol 130:247–252CrossRefGoogle Scholar
  41. 41.
    Tzvetkov G, Graf B, Fernandes P, Fery A, Cavalieri F, Paradossi G and Fink RH (2008) Soft Matter 4:510CrossRefGoogle Scholar
  42. 42.
    Xia Y and Whitesides GM (1998) Softlithographie. Angew Chem Int Ed 37:551CrossRefGoogle Scholar
  43. 43.
    Zubavichus Y, Yang Y, Zharnikov M, Fuchs O, Schmidt TH, Heske C, Umbach E, Tzvetkov G, Netzer FP and Grunze M (2004) Chem Phys Chem 5:509Google Scholar

Copyright information

© Springer-Verlag Italia 2010

Authors and Affiliations

  • Paulo Fernandes
    • 1
  • Melanie Pretzl
    • 2
  • Andreas Fery
    • 2
  • George Tzvetkov
    • 3
  • Rainer Fink
    • 4
  1. 1.Max-Planck-Institute for Colloids and Interfaces (MPIKG)Wissenschaftspark GolmPotsdamGermany
  2. 2.Department of Physical Chemistry IIUniversity of BayreuthBayreuthGermany
  3. 3.Department of Inorganic Chemistry Faculty of ChemistryUniversity of Sofia 1SofiaBulgaria
  4. 4.Physikalische Chemie IIFriedrich-Alexander Universität ErlangenErlangenGermany

Personalised recommendations