Ultrasound Contrast Agent Microbubble Dynamics

  • Marlies Overvelde
  • Hendrik J. Vos
  • Nico de Jong
  • Michel Versluis


Ultrasound contrast agents are traditionally used in ultrasound-assisted organ perfusion imaging. Recently the use of coated microbubbles has been proposed for molecular imaging applications where the bubbles are covered with a layer of targeting ligands to bind specifically to their target cells. In this chapter we describe contrast agent microbubble behavior starting from the details of free bubble dynamics leading to a set of equations describing the dynamics of coated microbubbles. Experimentally, the dynamics of ultrasound contrast agent microbubbles is temporally resolved using the ultra-high speed camera Brandaris 128. The influence of a neighboring wall is investigated by combining the Brandaris camera with optical tweezers. It was observed that the presence of the wall can alter the bubble response. A detailed description of the bubble-wall interaction may therefore lead to improved molecular imaging strategies.


Acoustical Society Rigid Wall Bubble Radius Ultrasound Contrast Agent Shell Elasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ashkin A (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Optics Letters 11(5):288CrossRefGoogle Scholar
  2. 2.
    Bjerknes V (1906) Fields of Force. Columbia University PressGoogle Scholar
  3. 3.
    Brock-Fisher G, Poland M and Rafter P (1996) Means for increasing sensitivity in non-linear ultrasound imaging systems US patent no 55775Google Scholar
  4. 4.
    Chetty K, Stride E, Sennoga C, Hajnal J and Eckersley R (2008) High-speed optical observations and simulation results of sonovue microbubbles at lowpressure insonation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 55(6):1333–1342CrossRefGoogle Scholar
  5. 5.
    Chin C, Lancee C, Borsboom J, Mastik F, Frijlink M, de Jong N, Versluis M and Lohse D (2003) Brandaris 128: A digital 25 million frames per second camera with 128 highly sensitive frames. Review of Scientific Instruments 74:5026–5034CrossRefGoogle Scholar
  6. 6.
    Church C (1995) The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. The Journal of the Acoustical Society of America 97(3):1510–1521CrossRefGoogle Scholar
  7. 7.
    De Jong N, Cornet R and Lancee CT (1994) Higher harmonics of vibrating gas-filled microspheres. part one: simulations. Ultrasonics 32:447–453CrossRefGoogle Scholar
  8. 8.
    De Jong N, Emmer M, Chin C, Bouakaz A, Mastik F, Lohse D and Versluis M (2007) “compression-only” behavior of a phosphorlipid-coated contrast bubbles. Ultrasound in Medicine and Biology 33(4)Google Scholar
  9. 9.
    Doinikov A (2001) Translational motion of two interacting bubbles in a strong acoustic field. Physical Review E 64(2):026,301CrossRefGoogle Scholar
  10. 10.
    Emmer M, Wamel AV, Goertz D and Jong ND (2007) The onset of microbubble vibration. Ultrasound in Medicine and Biology 33(6):941–949CrossRefGoogle Scholar
  11. 11.
    Flynn H (1975a) Cavitation dynamics. i. a mathematical formulation. The Journal of the Acoustical Society of America 57(6):1379–1396MATHCrossRefGoogle Scholar
  12. 12.
    Flynn H (1975b) Cavitation dynamics: Ii. free pulsations and models for cavitation bubbles. The Journal of the Acoustical Society of America 58(6):1160–1170CrossRefGoogle Scholar
  13. 13.
    Gahagan K (1996) Optical vortex trapping of particles. Optics Letters 21(827):11Google Scholar
  14. 14.
    Garbin V, Cojoc D, Ferrari E, Fabrizio ED, Overvelde M, van der Meer S, de Jong N, Lohse D and Versluis M (2007) Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and highspeed imaging. Applied Physics Letters 90:114,103CrossRefGoogle Scholar
  15. 15.
    Gilmore F (1952) The growth or collapse of a spherical bubble in a viscous compressible liquid. Tech. rep., Hydrodynamics Laboratory, California Institute Technology, Pasadena, report 26-4Google Scholar
  16. 16.
    Gorce JM, Arditi M and Schneider M (2000) Influence of bubble size distribution on the echogenicity of ultrasound contrast agents. Investigative Radiology 35(11):661–671CrossRefGoogle Scholar
  17. 17.
    Herring C (1941) Theory of the pulsations of the gas bubble produced by an underwater explosion. Tech. rep., OSRD report 236Google Scholar
  18. 18.
    Hoff L, Sontum P and Hovem J (2000) Oscillations of polymeric microbubbles: Effect of the encapsulating shell. The Journal of the Acoustical Society of America 107(4):2272–2280CrossRefGoogle Scholar
  19. 19.
    Hope Simpson D, Ting CC and Burns P (1999) Pulse inversion doppler: a new method for detecting nonlinear echoes from microbubble contrast agents. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 46(2):372–382CrossRefGoogle Scholar
  20. 20.
    Keller J and Kolodner I (1956) Damping of underwater explosion bubble oscillations. Journal of Applied Physics 27(10):1152–1161CrossRefGoogle Scholar
  21. 21.
    Keller JB and Miksis M (1980) Bubble oscillations of large amplitude. The Journal of the Acoustical Society of America 68:628–633MATHCrossRefGoogle Scholar
  22. 22.
    Klibanov A (2002) Ultrasound Contrast Agents: Development of the Field and Current Status, Topics in Current Chemistry 222Google Scholar
  23. 23.
    Lankford M, Behm C, Yeh J, Klibanov A, Robinson P and Linder J (2006) Effect of microbubble ligation to cells on ultrasound signal enhancement: implications for targeted imaging. Investigative Radiology 41(10)Google Scholar
  24. 24.
    Lauterborn W (1976) Numerical investigation of nonlinear oscillations of gas bubbles in liquids. The Journal of the Acoustical Society of America 59(2):283–293CrossRefGoogle Scholar
  25. 25.
    Leighton T (1994) The Acoustic Bubble. Academic Press Inc. San DiegoGoogle Scholar
  26. 26.
    Marmottant P, van der Meer S, Emmer M, Versluis M, de Jong N, Hilgenfeldt S and Lohse D (2005) A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture. The Journal of the Acoustical Society of America 118:3499–3505CrossRefGoogle Scholar
  27. 27.
    Marmottant P, Versluis M, Jong ND, Hilgenfeldt S and Lohse D (2006) Highspeed imaging of an ultrasound-driven bubble in contact with a wall: “narcissus” effect and resolved acoustic streaming. Experiments in Fluids 41(2):147–153CrossRefGoogle Scholar
  28. 28.
    Minnaert M (1933) On musical air-bubbles and sounds of running water. Philosophical Magazine 16:235–248Google Scholar
  29. 29.
    Neppiras E and Noltingk B (1951) Cavitation produced by ultrasonics: Theoretical conditions for the onset of cavitation. Proceedings of the Physical Society Section B 64(12):1032–1038CrossRefGoogle Scholar
  30. 30.
    Noltingk B and Neppiras E (1950) Cavitation produced by ultrasonics. Proceedings of the Physical Society Section B 63(9):674–685CrossRefGoogle Scholar
  31. 31.
    Plesset M (1949) The dynamics of cavitation bubbles. Journal of Applied Mechanics 16:277–282Google Scholar
  32. 32.
    Poritsky H (1952) The collapse or growth of a spherical bubble or cavity in a viscous fluid. Proceedings of the first US National Congress on Applied Mechanics pp 813–821Google Scholar
  33. 33.
    Prosperetti A (1975) Nonlinear oscillations of gas bubbles in liquids. transient solutions and the connection between subharmonic signal and cavitation. The Journal of the Acoustical Society of America 57(4):810–821CrossRefGoogle Scholar
  34. 34.
    Prosperetti A, Crum L and Commander K (1988) Nonlinear bubble dynamics. The Journal of the Acoustical Society of America 83(2):502–514CrossRefGoogle Scholar
  35. 35.
    Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Philosophical Magazine 34:94–98Google Scholar
  36. 36.
    Sarkar K, Shi W, Chatterjee D and Forsberg F (2005) Characterization of ultrasound contrast microbubbles using in vitro experiments and viscous and viscoelastic interface models for encapsulation. The Journal of the Acoustical Society of America 118(1):539–550CrossRefGoogle Scholar
  37. 37.
    Trilling L (1952) The collapse and rebound of a gas bubble. Journal of Applied Physics 23(1):14–17CrossRefMathSciNetGoogle Scholar
  38. 38.
    Van der Meer S, Dollet B, Chin CT, Bouakaz A, Voormolen M, de Jong N, Versluis M and Lohse D (2007) Microbubble spectroscopy of ultrasound contrast agents. The Journal of the Acoustical Society of America 120:3327–3327Google Scholar
  39. 39.
    Vos H, Dollet B, Bosch J, Versluis M and de Jong N (2008) Nonspherical vibrations of microbubbles in contact with a wall — a pilot study at low mechanical index. Ultrasound in Medicine and Biology 34(4):685–688Google Scholar
  40. 40.
    Zhao S, Ferrara K and Dayton P (2005) Asymmetric oscillation of adherent targeted ultrasound contrast agents. Applied Physics Letters 87(13)Google Scholar
  41. 41.
    Zhao S, Kruse D, Ferrara K and Dayton P (2006) Acoustic response from adherent targeted contrast agents. The Journal of the Acoustical Society of America 120(6):EL63–EL69CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Italia 2010

Authors and Affiliations

  • Marlies Overvelde
    • 1
  • Hendrik J. Vos
    • 2
  • Nico de Jong
    • 2
  • Michel Versluis
    • 1
  1. 1.Physics of Fluids GroupUniversity of TwenteThe Netherlands
  2. 2.Biomedical EngineeringThorax Centre, Erasmus MCRotterdamThe Netherlands

Personalised recommendations